Intelligent Integration of Electric Motors and Engines

Sage Kokjohn
Engine Research Center
University of Wisconsin - Madison

Work based on funding from:

This material is based upon work supported by the U.S. Department of Energy’s Office of Energy Efficiency and Renewable Energy (EERE) under the Transportation Offices – Vehicle Technologies, Fuel Cell Technologies, and Bioenergy Technologies programs Award Number DE-EE0008801
Outline

• Engine Research Center (ERC) overview
• Overview of DOE hybrid project
 – Typical off-highway powertrains and challenges
 – Electrification of air-handling
 – Electrification of torque actuation
• Summary
Engine Research Center Overview

- The Engine Research Center (ERC) was established in 1946 by Profs. Myers and Uyehara, who were joined by Prof. Borman in 1970.
- Over the 70 years of its existence, the ERC has pioneered:
 - in-cylinder measurements of gas temperature, composition and heat flux
 - the simulation of turbulent, multi-phase, reacting flows in reciprocating engines
 - high efficiency, low-emissions combustion strategies such as RCCI and HCCI
- Current ERC has 5 active faculty, 3 emeritus faculty, and ~50 graduate students, post-docs, and scientists
Engine Research Center Overview

- ERC Research Projects

- Fuel Injection and Sprays
- System Optimization
- Charge Preparation
- Low Emissions High Efficiency
- Exhaust Aftertreatment
- Controls
- Diagnostics
Overview of DOE Hybrid Project

- Recently started a new program with DOE focused on hybridization of off-highway vehicles
- Joint program between UW-ERC, WEMPEC, John Deere, and Purdue University

<table>
<thead>
<tr>
<th>Team member</th>
<th>Location</th>
<th>Role in project</th>
</tr>
</thead>
<tbody>
<tr>
<td>UW – Madison Engine Research Center</td>
<td>Madison, WI</td>
<td>Program Lead</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Combustion System Development</td>
</tr>
<tr>
<td>UW – Madison Wisconsin Electric Machines and Power Electronics Consortium</td>
<td>Madison, WI</td>
<td>Electric Machine Development</td>
</tr>
<tr>
<td>John Deere</td>
<td>Cedar Falls, IA</td>
<td>System Integration</td>
</tr>
<tr>
<td>Purdue University</td>
<td>West Lafayette, IN</td>
<td>Powertrain Controls</td>
</tr>
</tbody>
</table>
Overview of Off-Highway Vehicle Powertrains

Baseline powertrain
- Turbo-charged diesel engine
- Hydraulic or mechanical transmission
- High pressure (>2000 bar) common-rail fuel system
- Suite of emissions control
 - Cooled exhaust gas recirculation (EGR) → in-cylinder NOx control
 - Selective catalytic reduction (SCR) → controls NOx in the exhaust
 - Diesel particulate filter (DPF) → captures soot in the exhaust
 - Hydrocarbon, carbon monoxide, and ammonia slip catalysts
Off-highway Vehicle Challenges

- Transient duty-cycle requires rapid torque response
 - Engine is often oversized to accommodate torque acceptance
 - Turbine is sized for transient response, resulting in increased back pressure at high flow conditions → decreased efficiency

- “Passive” control of air-handling results in upload soot “spikes” and download NOx “spikes”

- Periods of low-load operation require after-treatment thermal management (i.e., using fuel to keep the aftertreatment warm without performing work)

- Integration of electric motors and engines may mitigate these challenges while retaining the required energy density for operation in remote environments
Improved Air Handling through Electrification

• Electric supercharger
 – Located in parallel with existing turbocharger and used to provide additional air-flow to help spool turbo
 – Energy recovery is possible, but has substantial losses
 – System simulations show a substantial improvement in transient response
 – Efficiency improvement requires system architecture changes enabled by improved air control (e.g., downsizing)
Improved Air Handling through Electrification

- Electric turbocharger
 - High speed > 50,000 rev/min electric motor coupled to turbo-shaft
 - Natural operation in both powering and energy recovery modes
 - 48V and higher voltage systems are common
Soot Reduction using E-Turbo

- E-turbo’s improved control over airflow expected to reduce transient soot by avoiding operation at low AFR
- Assessed using one-dimensional fluid dynamics modeling over a load step from 50 to 400 N-m
- E-turbo uses exhaust air-fuel ratio feedback to minimize operation at low AFR (conducive to soot formation)
- Results show
 - 33% reduction in transient soot
 - Estimated 1.4% reduction in fuel consumption due to reduced DPF regeneration penalty
• Additional benefits are possible with full-hybridization due to transient nature of the drive cycle
 – Allow use of a smaller engine by peak shaving
 – Avoid low load operation where mechanical losses are high by valley shaving
Hybridization and Downsizing

- Baseline engine: 6.8 L Tier 4 final engine with a peak torque of 1057 N-m (BMEP = 19.5 bar)
- Peak load of downsized (4.5 L) engine constrained to 19.5 bar BMEP
- Non-road transient cycle (NRTC) simulated
 - Engine provides torque from 200 N-m to 700 N-m
 - Charging below 200 N-m
 - Motor provides torque above 700 N-m
 - NOx constant at 0.4 g/kW-hr
 - Battery SOC forced to return to initial value at the end of the cycle
- 4% reduction in fuel consumption at equal DEF consumption
Energy Recovery using E-Turbo

- E-turbo used in conjunction with hybridization allows recovered energy to be used as torque demand

- One-dimensional fluid dynamics model used to evaluate energy recovery using the e-turbo

- E-turbo was set to absorb power from the exhaust by targeting an air-fuel ratio 2 to 5 points below the steady-state air fuel ratio

- ~2.7% reduction in fuel consumption
Combined System Benefits

- System analysis shows pathway to > 10% increase in efficiency
Summary

• Substantial potential for improvement in off-highway vehicle efficiency through hybridization
• System analysis shows a pathway to >10% reduction in fuel consumption
 – Downsizing
 – Energy recovery
 – Reduced soot penalty
 – Reduced catalyst heating penalty
• Engine and in-vehicle demonstration planned
Questions???

Contact Info
Sage Kokjohn
kokjohn@wisc.edu
(608) 263-1610
www.erc.wisc.edu
Reducing the Catalyst Heating Penalty

- SCR equipped engines have a fuel consumption penalty at low load conditions due to the requirement to keep the catalyst temperature above ~200° to 250° C to allow urea dosing.
- E-turbo can be used to control catalyst inlet temperature to keep the catalyst warm while minimizing the fuel consumption penalty.
- Application of e-turbo shows
 - 18% reduction in fuel consumption during catalyst heating or “stay warm” operation
 - Estimated reduction in NRTC fuel consumption of 2.7%