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Large amount of energy is consumed| il
by transportation sector annually: N
e |nthe US, transportation sector £
consumes ~30% of total energy. | 3« D—
e There are 800 million passenger | i». o
vehicles in the world now. T
. . CPPIIPIIIPEPIEPEPTEPEPS
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Fig. a| Data Source: (Anderson, Terry , 2011) Graph Credit: Fernando Arias

reach 2.8 billion by 2050. | I

Environment and human health impact:

e CO, effect on climate (greenhouse gases)

e NOx emission forms smog and acid rain

* PM causes serious respiratory disease ;;‘;:;'ﬁi
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s+ Still short of controllability in
ICE to adjust the HCCI
combustion.
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Reaction production
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» Existing control methods, e.g.
regulating exhaust gas
Pressure recirculation (EGR), varying
valve timing and stratifying
charge, can only execute
combustion control at specific
time instants in each cycle.
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Temperature
Species concentratio
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— Control-Oriented Model
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Increasing both the CR and the Q can
realize multiple fuels combustion in FPE

Increasing CR and Q can both advance the
SOC timing

A new control means is achieved for

combustion phasing control — piston
trajectory
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Both CR and O have direct effects on the amount of indicative work output

The peak of output work surface is located at zone with larger CR and smaller Q
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e Detailed reaction mechanism
e Higher computational burden
e Control application

Comprehensive
model

] Existing control- 1N Over-simplifying the chemical kinetics
e HCCI combustion simulation

oriented model

New control- e Best balance between

oriented model computational burden
and prediction accuracy

Chen Zhang 2018 CCEFP IEC Summit Meeting



M UNIVERSITY OF MINNESOTA

Modeling Approach

Driven to Discover*

Variable piston trajectories

Geometric
part

Chemical
kinetics part

The first law of thermodynamics JHIERE S e ),

and heat loss process

Combustion process
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In order to reduce computational time and Phase 1: Pure compression
keep sufficient chemical kinetics information, Phase 2: Ignition phase

the engine operation cycle is separated by R :CH, +0.50, — CO+2H,

several phases. 15095

RR, =4.4x10° -[CH 1" -[0,]'* ex (——)
2000 . . | . . :
o B - Phase 2 T Phased - Phase 3: Heat release phase
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2 1200 @[CH4 =0 10065
£ 1000§ BDC @ T =500K : \\@T 900 K BDCE RR2 =2.75x10" -[CO]- [H, O]GXP(_T)
g : VA
5 @;I'=1800K 17609
- / | _susptis \ RRy =1.5x10” -[H,][0,]" exp(-———)
6005 ; d
sool i Sub-phase: NOx production
L ] 6.0x10" — 69090
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Time [ms] * T T
Phase separation within an engine cycle Phase 4: Pure expansion
Chen Zhang 2018 CCEFP IEC Summit Meeting 17




COmputationa| COSt M UNIVERSITY OF MINNESOTA

Driven to Discover*

The proposed model is compared with the other two models:

Simplified model

e Entire chemical kinetics is represented by a global reaction.
e Assuming the heat release is instantaneous after the combustion.

Detailed model

e The chemical kinetics is represented by a detailed reaction mechanism includes
53 species and 325 reactions.

Utilized model Computational time [ The detailed model needs 2070 ms to
[ms] simulate an engine cycle.

Detailed model 2070

O The proposed model reduce the
Proposed model 98 computational turnaround time by 95%.

Simplified model 6 O The simplified model only takes 6 ms.
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: : , ‘ . . ] . *» Good agreement between
o I\ Detgiisd mocs) the proposed model and the

Proposed model .
Simplified model detailed one.
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* The simplified model fails to
represent the combustion
precisely due to its over-
simplifying of the chemical
kinetics.
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» Simplified model cannot
provide any information on
NOx emission while the
others predicts similar results
of NOx production.

L)

Comparison of the accuracy of the prediction — Temperature
and NOx production (inserted)
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» At given CR, various piston trajectories as
well as their output work can be presented
as a function of Q.

> Smbllexignveidl resutt Vg inconfig€xy

combustion and larger Q will increase the

Optimal Q

heat loss.
5 | , | ‘ | ‘ * > higher CR, lower optimal Q.
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e O i;_; d Asymmetric trajectories
7 o Increase thermal efficiency
o Reduce NOx emissions

O Two Qs represent compression and
expansion trajectories respectively.

Displacement [mm]
w
o

d Forming a two dimensional

r L optimization problem at a fixed CR.
T|me[ms] . W C NO

§ 0.9 Maxmize: J, =w1W——w ((Ng))—f(Ql,Qz)
Plston Trajectory NOx Emission
% N [mol/m3]
Asymmetrlc 2.35 0.40 | 401.91 2.32e-6 :
EN [
g Symmetric 1.11 1.11 | 398.28 4.07e-6 |
S -~ : Oov — “’f - % w;and w, are weight coefficients.

{) compression Q) expansion
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Due to the repetitive nature of the ] I AR T [Xe ) 0 Xyl -Ir
FPE operation: w!l R L ek o Xk
> the time differential equationsin |l || | |
the model can be numerically . '
solved in cycle base. : T : :
» It forms a mapping converting the | | : I I
piston trajectory (u) in each cycle II”n—lI IP" v L Xen b [ X, ]n—ll
to other states of the model. Lu, ) | BT, [Xew,l, [ Xy, 1, ]

The original dynamic optimization problem is transformed into a static nonlinear
programming problem and solved by SQP algorithm:

Minimize: Work output NOx emission
0, Wy = k nalty if the final
(DU,M —_SY P i+1 l +l"‘maXO, —3e—6 r WOrKs as a pe \
J(DG),u) g‘ ’ (0,140, o ) NOx emission > 3e-6 mol/m3
over u e R
Subject to h(u) =( h(u) limits the start, middle and end points of the trajectory.
g(u)<0 g(u) ensures the piston velocity < 8m/s.

ut <u<y?  utanduYare the TDC point and the BDC point respectively.
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* Controlled Trajectory Rapid Compression and
Expansion Machine (CT-RCEM)
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Hydraulic

‘ -J <
i Fueling and Exhaust System &‘?@,éﬁ-

A

Hydraulic actuator unit: high pressure accumulator, servo-valve
Combustion chamber unit: combustion cylinder with a creviced piston
Fueling and exhaust purging system: different set of check valves
Control module: centralized data logging and motion control unit
Diagnostics system: GCMS and PLIF system
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C h a ra Cte ri Zat i O n Of Py Repeatability of tracking performance
CT-RCEM

Repeatability of trajectory & pressure

140 [ 25 /E\
_ E
120 i 5
120 =
r L
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£ wl 58 | Tracking accuracy is the
s | 7 ool key to repeatability _
g eor 10 @ oL v .. ]
S o 20 15 10 5 0
or Time (ms)
2| 1> Repeatability Analysis for CR16.7
0 o * Stroke: 131 mm

Time (ms) * Compression time: 20ms
Four repetitions for CR: 16.7, Peak velocity: 12.5 m/s

compression time 20ms. Average velocity: 7 m/s
* Peak tracking error: 0.6 mm
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Preliminary Case Study: trajectory
effect on the auto-ignition of DME

" |dentical air fuel mixtures were
compressed (DME:02:N2 = 1:4:40)

= The trajectories are with the same
CR = 16.7, but different compression
time (20ms and 30ms)

= The first-stage ignition delay is
0.9ms in 20ms case, while it is 1.6ms
in 30ms case.

Position (mm)
Pressure (bar)

The CT-RCEM is a perfect facility to validate the trajectory-based combustion control:
» Precise and fast piston motion control
» Comprehensive information on fuel properties and the related emissions

» Accurate measurement on pressure and species concentration via the optical
diagnostics system
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e Conclusions
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» Proposed the trajectory-based combustion control to
achieve real-time control on the combustion in the FPE

» Developed a dynamic model to systematically investigate
the effectiveness of the proposed combustion control

» Realized the enhancement of the thermal efficiency and
the reduction of NOx emission simultaneously as well as
the combustion phasing control for multiple fuels

» Designed, manufactured and tested a unique CT-RCEM
to enable the experimental validation of the proposed
combustion control method

» Provided a new platform to realize co-optimization on
both fuel production and engine performance
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