

A National Science Foundation Engineering Research Center

Georgia Institute of Technology | Marquette University | Milwaukee School of Engineering | North Carolina A&T State University | Purdue University | University of California, Merced | University of Illinois, Urbana-Champaign | University of Minnesota | Vanderbilt University

Control and Diagnostic of Electro-Hydraulic Machines

Project PI & presenter

Dr. Andrea Vacca

avacca@purdue.edu

CCEFP Summit at the University of Kentucky *March 7-9, 2018*

Outline

- Project rationale and goals
- Reference machine
- Past accomplishments within 16MO2 (diagnostics)
- Research approach for prognostics
- Conclusions and future works

possible applications

16MO2

Andrea Vacca

slide 2

A National Science Foundation Engineering Research Center

Project rationale

Electro-Hydraulics (EH) a well established technology

2017 Bianchi R., Ritelli G. F., Vacca A. "Payload oscillation reduction in load-handling machines: A frequency-based approach" Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering

EH has enabled advanced control techniques

Limited research effort for combining EH control with Prognostics and Health Management (PHM)

16MO2

slide 3

A National Science Foundation Engineering Research Center

Project rationale

Ritelli, G.F., Vacca, A. 2014, "Experimental-Auto-Tuning Method for Active Vibration Damping Controller. The Case Study of a Hydraulic Crane" 9th IFK, Int. Fluid Power Conference, March 24-26, Aachen, Germany

A National Science Foundation Engineering Research Center

Project rationale

Electro-Hydraulics (EH) a well established technology

EH has enabled advanced control techniques

Limited research effort for combining EH control with Prognostics and Health Management (PHM)

Combine Control and PHM

machine maintenance downtime costs reduction

16MO2

slide 5

Project goal

..to formulate a control approach for load handling hydraulic machines that combines advanced control features (such as oscillation damping features) with system diagnostics/prognostics functions

PHM: Prognostics and Health Management

16MO2	slide 6	Andrea Vacca

A National Science Foundation Engineering Research Center

TIAC

Reference Machine

Telescopic stages

Outer Boom actuator

Main Boom actuator

1740 [kg]
5÷0.51 [t] depending on the extension
410°
270 [bar]
4
12.3 [m]
16.1 [m]

16MO2

slide 7

slide 8

A National Science Foundation Engineering Research Center

16MO2 accomplishments

16MO2

slide 9

A National Science Foundation Engineering Research Center

16MO2 accomplishments

Fluid Power Innovation & Research Conference October 10th - 12th 2016

CCEFP Industry – University Summit, April 4th - 6th 2017

Campanini, F., Bianchi, R., Vacca, A., Casoli, P., 2017, "Optimized Control for an Independent Metering Valve with Integrated Diagnostic Features" ASME/Bath Symposium on Fluid Power and Motion Control, FPMC 2017, Oct. 16-19, 2017, Sarasota, FL, USA

Independent Metering controller

- Velocity control through the meter-in valve
- Pressure control through the meterout valve
- Tunable PI control to minimize steady state error and plant uncertainities uncertainties

16MO2

A National Science Foundation Engineering Research Center

16MO2 accomplishments

Campanini, F., Bianchi, R., Vacca, A., Casoli, P., 2017, "Optimized Control for an Independent Metering Valve with Integrated Diagnostic Features" ASME/Bath Symposium on Fluid Power and Motion Control, FPMC 2017, Oct. 16-19, 2017, Sarasota, FL, USA

Correlation between controller cost functions and faults

		Healthy	Faulty
- Habb	Volumetric efficiency	0.95	0.65
	Meter-in friction	1	20
	Cylinder friction	1000	7500
	Unloading valve friction	1	20

Outer boom extension

Π

A National Science Foundation Engineering Research Center

16MO2 accomplishments

CCEFP Industry – University Summit April 4th - 6th 2017

CCEFP Webinar November 15th 2017

Diagnostic algorithm

- Selection of a data-driven approach (NN)
- Fault selection (pump, 2 valves, cylinder)
- Cost functions definition
- Progressive reduction of the number of sensors, 4 pressure sensors currently used

A National Science Foundation Engineering Research Center

16MO2 accomplishments

CCEFP Industry – University Summit April 4th - 6th 2017

Experimental validation

- Dedicated experimental set up
- Reproduction of faults

16MO2

slide 13

CCEFP Webinar

16MO2

slide 14

A National Science Foundation Engineering Research Center

Prognostics

Open center control valve block

Independent metering control valve block

16MO2

slide 15

1. SIMPLIFIED HYDRAULIC SCHEMATIC

- FIXED DISPLACEMENT PUMP
- OPEN CENTER DIRECTIONAL VALVE
- CYLINDER ACTUATOR

2. FAULT INJECTION

- PUMP EFFICIENCY
- VALVE SPOOL BLOCKAGE
- 3. SIMULATION AND DATA ACQUISITION
 - FLOW AT CYLINDER INPUT
 - VALVE INPUT CURRENT

4. REMAINING USEFUL LIFE ESTIMATION

Prognostics

- Weibull hazard function shape
- Several run-to-failure simulation
- Various working temperature as factor of influence:

- 10 °C
- 20 °C
- 30 °C
- 40 °C
- 50 °C

Prognostics

P_i : Life percentage at current working time

 t_i : considered monitoring time FT: Failure time of the data set RUL_i : Remaining useful life

A National Science Foundation Engineering Research Center

Prognostics

A National Science Foundation Engineering Research Center

ISOLATED FAULT ANALYSIS

16MO2

A National Science Foundation Engineering Research Center

Prognostics

ISOLATED FAULT RESULTS VALVE

slide 22

A National Science Foundation Engineering Research Center

Prognostics

ISOLATED FAULT RESULTS VALVE

RMS =
$$\sqrt{\frac{\sum_{i=1}^{n} (Y_{net}(i) - Y_{act}(i))^2}{n}} = 3.9779$$

$$E_{\%} = 100 \frac{|Y_{net} - Y_{act}|}{Y_{act}} \Box \qquad 4\%$$

slide 23

A National Science Foundation Engineering Research Center

Prognostics

Purdue

Maha Fluid Power

RESEARCH CENTER

ISOLATED FAULT RESULTS
<u>PUMP</u>

Andrea Vacca

slide 24

Prognostics

COMBINED FAULTS ANALYSIS

slide 25

A National Science Foundation Engineering Research Center

Prognostics

16MO2

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

A National Science Foundation Engineering Research Center

Prognostics

A National Science Foundation Engineering Research Center

Prognostics

RMS =
$$6.03$$

 $E_{\%}$ = 14.58%

A National Science Foundation Engineering Research Center

Prognostics

16MO2

slide 31

A National Science Foundation Engineering Research Center

Prognostics

Algorithm improvement

A National Science Foundation Engineering Research Center

Prognostics

Maha Fluid Power

Conclusions

- 16MOC2 so far:
 - Instrumented reference machine with an independent metering system
 - Model validation
 - Definition of a control strategy for the independent metering
 - Diagnostic algoritm with data driven method (neural network)
- Today's presentation:
 - Basic idea for prognostic algorithm
 - Verification tests on open-center system
 - Introduction of fuzzy logic tobetter handle cuncurrent component degradation

Future work

- Extension of the prognostic algorithm to the complete crane model
- Experimental validation of both diagnostics and prognostics methods

16MO2

slide 35

Project Overview At A Glance

Research goal

To formulate a diagnostic algorithm for load handling machines that combines diagnostic and prognostics with control features present on the machine

Research approach

The proposed approach for diagnostic and prognostics is based on a neural network and considers cost functions as features for evaluating the state of the system.

The cost functions are defined to be a representation of the action of the controller on the machine.

This project is in line with CCEFP vision to "Increase energy efficiency in FP applications", "Improve the reliability of fluid power systems" and "Build smart fluid power components and systems".

Major Objectives or Deliverables

- To formulate a general and self-tuning control algorithm suitable for oscillation damping and for control of valve controlled systems, including independent metering systems.
- Identification of a prognostic method suitable to handle concurrent component degradation.

Next Steps

- Experimental validation of the diagnostic technique.
- Test of the prognostic technique on the complete model of the reference machine.
- Perform tests for the validation of the prognostic algorithm.

A National Science Foundation Engineering Research Center

Thank you !

Control and Diagnostic of Electro-Hydraulic Machines

Project PI & presenter

Dr. Andrea

Vacca

avacca@purdue.edu

Maha Fluid Power Research Center Purdue University

https://engineering.purdue.edu/Maha/

slide 37