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Controlled Stirling Power Unit
• Capable of using heat from many 

different sources, including waste 
heat.

• Output power can be hydraulic, 
pneumatic, mechanical, or electric

• Virtually noiseless operation

• Low maintenance

• Efficient (Stirling cycle approaches 
Carnot efficiency at high 
temperatures and pressures)

• Thermodynamics can be 
controlled
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Stirling Engine Cycle

Thermocompressor
Arrangement

Power Piston
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The Beale Number

Output power (watts)
Median operating pressure (Pa)
Power piston frequency (Hz)

 Volume displaced by power piston (m3)

Controlled Displacer Piston
• Decoupled from power piston
• Multiple motion profiles
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Model and Verification
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Controlled Displacer Thermocompressor

High pressure 
tank 

Low pressure 
tank 

Thermocompressor

High pressure 
tank 

Low pressure 
tank 
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The Beale Number

Output power (watts)
Median operating pressure (Pa)
Power piston frequency (Hz)

 Volume displaced by power piston (m3)

Controlled Displacer Piston
• Decoupled from power piston
• Multiple motion profiles

Controlled Mass Flow
• Pressure controlled from 

mass injected at strategic stages
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Controlled Inter-Unit Mass Flow
Ideal Stirling Cycle

1.

2.

3.
4.

Volume

Pressure

1. Isothermal Process (Work Out)

2. Isochoric Process

3. Isothermal Process (Work In)

4. Isochoric Process
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Inter-Unit Mass Flow Simulation
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Inter-Unit Mass Flow Simulation

Number of 
Stages

Steady State 
Pressure

Adjusted Steady-State 
Pressure

kPa psia kPa psia

1 165.2 24.0 145.6 21.1

2 317.8 46.1 253.2 36.7

3 604.8 87.7 453.9 65.8

4 1,089.6 158.0 789.8 114.5

5 1,791.5 259.8 1,266.9 183.7

6 2,674.0 387.9 1,855.3 269.1
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Power Piston
Displacer Piston

Power Piston
Displacer Piston

Common Load

Stirling Engine Stirling Engine

Flywheel

Conceptual Architecture

Power Piston
Displacer Piston Displacer Piston

Flywheel

Stirling Engine
Stirling 

Thermocompressor
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Volume

Pressure

Conceptual Architecture

Relative Phases

Power
Piston

Stirling
Displacer
Piston

Thermo-
compressor
Displacer
Piston

Mass Input

Mass Output
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Simulation Results Mass Flow 
Window

𝝅
𝟏𝟔 radians

Modelled 
Power Piston 
Displacement

42.94 cm3

Frequency 1 Hz

Median 
Operating 
Pressure

16.57 bar

Net Power 
Output 
(no mass flow)

7.97 watts

Net Power 
Output 
(mass flow)

18.86 watts

Relative 
Power 
Gain

2.92 watts
(18.34%)
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Controlled Mass Flow 
Window Range
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Increased Power Density in Multi-Engine 
Systems

Potential Applications

Image Credits on Last Slide
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Increased Power Density in Multi-Engine 
Systems

Potential Applications

Image Credits on Last Slide
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Next Steps
• Validate Controlled Mass Flow Simulation Results with 

Experimental Data
– Install Linear Alternator on Current Stirling Thermocompressor to 

make a Traditional Stirling Engine
– Emulate Thermocompressor Pressure Oscillations Using Reservoirs 

Held at High/Low Temperatures, 
Pressures

– Regulate Mass Flow using Control 
Valves

• Experimentally Validate Full 
Control of Stirling Engine

Linear Alternator
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Conclusions
• A control strategy for increasing power output from Stirling 

devices using controlled mass flow from accompanying Stirling 
thermocompressors was introduced and simulated.

• Simulation results corroborate that power output can be greater 
using an engine-thermocompressor arrangement than with an 
equivalent pair of Stirling engines.  Experimental validation is 
forthcoming.  

• Contact Information:
– Seth Thomas

• benjamin.s.thomas@vanderbilt.edu
– Dr. Eric J. Barth

• eric.j.barth@vanderbilt.edu
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