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Structural Acoustic Paradigm
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Analysis Overview 
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Experimental Facilities

Characterize the 

measured sound field in 

spatial, temporal, and 

frequency domains.
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Automated Spatial Sampling 

Custom robot for automated method 

of measuring sound intensity at any 

given number of evenly spaced 

locations.
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Floor Reflections Removal
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Final Grid and Path
225-point Grid

Measurement Path

Path:

• Time-based optimization

• 37 min. to run through a whole 

grid (23 min. faster (54%))

Hemispherical Grid:

• 225 points (26 more points)

• One reflection surface - fulfills ISO 4412
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Updated Chamber
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Perception
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Example Perception Results

Example Sound Intensity Map
SWL: 86.1 dB

Example Sound Intensity Map
SWL: 86.1 dB

Example Loudness Level
mean: 95.2 dB

Example spl Level [dBc]
mean: 83.1 dB

Example Intensity FFT
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Frequency Analysis

Example measurement: 

A pump with 9 pistons @ 3000 rpm

Pump Harmonic Frequencies: 

450 Hz, 900 Hz, 1350 Hz, 1800 Hz …
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Frequency Analysis
Simplify the frequency analysis

Octave: upper band frequency is the lower 
band frequency multiplied by 2

1/3 Octave: upper band frequency is the 

lower band frequency multiplied by 
3
2
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Spherical

Harmonics
(radiation)
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Measured Pressure Field
(1200rpm, Frequency: 0-25kHz)
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Acoustic Holography

Reconstruct the sound field; for every location and any time

1. Particle velocity

2. Sound pressure

Consequentially:

1. Modal vibrational pattern

2. Vector intensity field

3. Far-field radiation pattern

4. Total radiated power

(DeVries ,1994)
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Acoustical Meaning of S.H. 

Functions n = 0, monopole

Pulsating 
sphere

n = 1, dipole

Pulsating 
force

n = 2, quadrupole

Pulsating 
moment



18
Paul Kalbfleisch

Maha Fluid Power Research Center
16ST2

Wave Equation Decomposition

𝛻2p =
1

𝑐2
𝜕2p

𝜕𝑡2

𝑝 𝑟, 𝜃, 𝜙, 𝑡
= 𝑅 𝑟 𝑃 𝜃 Φ 𝜑 𝑒−𝑗𝜔𝑡

Radial Part Solution:

𝑅 𝑟 = ℎ𝑛 𝑘𝑟 ≅
1

𝑟𝑛

𝑝 =  

𝑛=0

+∞

ℎ𝑛 𝑘𝑟 ∙  

𝑚=−𝑛

𝑛

𝑎𝑛𝑚 ∙ 𝑌𝑛
𝑚 ∙ 𝑒−𝑗𝜔𝑡

Directional Part 
Solution:

𝑃 𝜃 Φ 𝜑 = 𝑌𝑛
𝑚

Spherical Harmonic 

Functions
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From Theory to Practice

𝒑 =

𝑞1
𝑞2
⋮
𝑞𝑀

= 𝑐1

𝑌0
0(𝜃1, 𝜙1)

𝑌0
0(𝜃2, 𝜙2)
⋮

𝑌0
0(𝜃𝑀, 𝜙𝑀)

+ 𝑐2

𝑌1
−1(𝜃1, 𝜙1)

𝑌1
−1(𝜃2, 𝜙2)
⋮

𝑌1
−1(𝜃𝑀, 𝜙𝑀)

+ 𝑐3

𝑌1
0(𝜃1, 𝜙1)

𝑌1
0(𝜃2, 𝜙2)
⋮

𝑌1
0(𝜃𝑀, 𝜙𝑀)

+⋯

Boundary condition:

𝐴𝑡 𝒓 =

𝜃1 𝜙1 𝑟1
𝜃2 𝜙2 𝑟2
⋮
𝜃𝑀

⋮
𝜙𝑀

⋮
𝑟𝑀

, 𝒑 =

𝑞1
𝑞2
⋮
𝑞𝑀

robot grid positions
M, measured 

sound pressure

Possible solution to (3) is: 𝑝 =  

𝑛=0

+∞

ℎ𝑛 𝑘𝑟  

𝑚=−𝑛

𝑛

𝑎𝑛𝑚 ∙ 𝑌𝑛
𝑚

Governing equation: 𝛻2𝑝 + 𝑘2𝑝 = 0 (3)



20
Paul Kalbfleisch

Maha Fluid Power Research Center
16ST2

Least Square Fitting
Truncate to finite order N, and write as matrix form:

𝒀 =

𝑌0
0(𝜃1, 𝜙1) 𝑌1

−1(𝜃1, 𝜙1)

𝑌0
0(𝜃2, 𝜙2) 𝑌1

−1(𝜃2, 𝜙2)

… 𝑌𝑁
𝑁(𝜃1, 𝜙1)

… 𝑌𝑁
𝑁(𝜃2, 𝜙2)

⋮ ⋮
𝑌0
0(𝜃𝑀, 𝜙𝑀) 𝑌1

−1(𝜃𝑀, 𝜙𝑀)
⋱ ⋮
… 𝑌𝑁

𝑁(𝜃𝑀, 𝜙𝑀)

𝑁 + 1 2 unknowns

𝑀 equations

𝒀𝒄 = 𝒑
𝒄 = 𝒀−𝟏𝒑 ⟺ 𝒀𝒄 − 𝒑 = 𝟎
𝒄 = 𝒀+𝒑 ⟺ 𝒎𝒊𝒏( 𝒀𝒄 − 𝒑 )

𝒄 =

𝑐1
𝑐2
⋮

𝑐 𝑁+1 2

, 𝒑 =

𝑞1
𝑞2
⋮
𝑞𝑀
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Measurement Fitting
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Measured Pressure Field
1200rpm, 1st harmonic (180 Hz)
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Measured Pressure Field
1200rpm, 1st harmonic (180 Hz)
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Measured Pressure Field
2400rpm, 2nd harmonic (720 Hz)
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Measured Pressure Field
2400rpm, 2nd harmonic (720 Hz)
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Near-Field Holography
In Progress

The pressure field also includes 

Evanescent waves, which decay 

exponentially with distance.

Far-field holography capture's only 

the propagating pressure waves 

Pump Surface

Pump Surface

Near-field holography capture's both 

the propagating and evanescent 

waves
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Near-Field Arm
In Progress

A near field arm is being 

manufactured.

An additional arm added 

to the robot will help 

improvements 

measurements:

• Easier / faster 

• Repeatable 
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Propagation
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Surface Vibrations Example

1200rpm

1000 Times slower

Movements exaggerated
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Structural Attenuation
In Progress

Consistent spikes in multiple 

accelerometers yield the structural 

modes and resonances. 

Relative phase of different pump 

locations reveals the mode shapes.

A designer can

1. Design valve plates based on 

the Structural Attenuation 

2. Add mass/stiffness to effect the 

Structural Attenuation 
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• Basic Frequency Response Equation (SDOF)

( )H w  FRF

(Avitabile, 2003)

Frequency (Hz)

ω2 ω3ω1

M
a
g
n
it
u
d
e
  

(g
/N

) 

Operational Modal Analysis
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Generation



33
Paul Kalbfleisch

Maha Fluid Power Research Center33Paul Kalbfleisch Maha Fluid Power

Fast Pressure Sensors

High Pressure Port
(1200rpm, 200 bar)
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Conclusion and Future Work

Conclusions

• Maha’s sound chamber has been successively remodeled. 

• Preliminary measurements have been made to generate 

realistic data for analysis development.

• A few new analysis techniques have been highlighted

Future Work:

• Continue working on Analysis tools to fully map the 

oscillatory energy pathways. 
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Analysis Overview 
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Thank You

Any Questions?


