CENTER FOR COMPACT AND EFFICIENT FLUID POWER

A National Science Foundation Engineering Research Center

Marquette University | Milwaukee School of Engineering | Purdue University | University of California, Merced | University of Illinois, Urbana-Champaign | University of Minnesota | Vanderbilt University

Investigation of Noise Transmission through Pump Casing

Paul Kalbfleisch, Researcher Dan Ding, Researcher Purdue University Monika Ivantysynova

CCEFP Industry-University Summit Lexington, KY | March 7 - 9, 2018

Structural Acoustic Paradigm

16ST2

Paul Kalbfleisch Maha Fluid Power Research

Analysis Overview Pressure Mechanical Acoustical Pump Sound loading Response Radiation Response Structure of surfaces Mechanical Coupling Radiation Generation Perception **Propagation** Transmission Surface Acoustic Port Sound pressure normal pressures camera Intensity velocity field **Far-Field** Bore • Structural **Empirical Spherical** Pressure Sound Power Transfer attenuation Harmonics Pressure **ISO** Loudness Spectrums **Functions** Operational modal Pressure FFT Module sims Near-field holography 1/3 Octave

Experimental Facilities

Characterize the measured sound field in spatial, temporal, and frequency domains.

Paul Kalbfleisch Maha Fluid Power Research Cer

Automated Spatial Sampling

Custom robot for automated method of measuring sound intensity at any given number of evenly spaced locations.

Paul Kalbfleisch Maha Fluid Power Research Cente

Floor Reflections Removal

Direct path Wall reflected path Floor reflected path Microphone

Final Grid and Path

NUMBER OF CART

Inner arm [deg]

225-point Grid

16ST2

Updated Chamber

Paul Kalbfleisch Maha Fluid Power Research Cente

Perception

Paul Kalbfleisch 10 Maha Fluid Power Research Maha Fluid Power

Example Perception Results

11

Frequency Analysis

Example measurement:

A pump with 9 pistons @ 3000 rpm

Pump Harmonic Frequencies: **450** Hz, **900** Hz, **1350** Hz, **1800** Hz ...

5Max1 SIL Harm 1 (mean: 74.5 dB)

16ST2

SIL [dB]

Frequency Analysis

Simplify the frequency analysis

16ST2

Octave: upper band frequency is the lower band frequency multiplied by 2

1/3 Octave: upper band frequency is the lower band frequency multiplied by $\sqrt[3]{2}$

Paul Kalbfleisch Maha Fluid Power Research Center

Maha Fluid Po

Spherical Harmonics (radiation)

Paul Kalbfleisch

Paul Kalbfleisch

Measured Pressure Field (1200rpm, Frequency: 0-25kHz)

1.2

1

Acoustic Holography

- Reconstruct the sound field; for every location and any time
- 1. Particle velocity
- 2. Sound pressure
- **Consequentially:**
- 1. Modal vibrational pattern
- 2. Vector intensity field
- 3. Far-field radiation pattern
- 4. Total radiated power

(DeVries , 1994)

16ST2

Paul Kalbfleisch Maha Fluid Power Research Cente

Acoustical Meaning of S.H. Functions

16ST2

1.5

Pulsating force

1.5

1.5

1

-0.5 0 0.5 1

-1 -0.5 0 0.5

-1.5

Pulsating moment

17

Wave Equation Decomposition

 $p(r,\theta,\phi,t) = R(r)P(\theta)\Phi(\varphi)e^{-j\omega t}$

Radial Part Solution:

$$R(r) = h_n(kr) \cong \frac{1}{r^n}$$

Directional Part Solution:

16ST2

$$P(\theta)\Phi(\varphi)=Y_n^m$$

Spherical Harmonic Functions

Paul Kalbfleisch Maha Fluid Power Research Cer

From Theory to Practice

Least Square Fitting Truncate to finite order N, and write as matrix form: $(N+1)^2$ unknowns $\boldsymbol{Y} = \begin{bmatrix} Y_0^0(\theta_1, \phi_1) & Y_1^{-1}(\theta_1, \phi_1) & \dots & Y_N^N(\theta_1, \phi_1) \\ Y_0^0(\theta_2, \phi_2) & Y_1^{-1}(\theta_2, \phi_2) & \dots & Y_N^N(\theta_2, \phi_2) \\ \vdots & \vdots & \ddots & \vdots \\ Y_0^0(\theta_M, \phi_M) & Y_1^{-1}(\theta_M, \phi_M) & \dots & Y_N^N(\theta_M, \phi_M) \end{bmatrix} \boldsymbol{M} \text{ equations}$ m $\boldsymbol{c} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_{(M+1)^2} \end{bmatrix}, \qquad \boldsymbol{p} = \begin{bmatrix} q_1 \\ q_2 \\ \vdots \\ q_M \end{bmatrix}$ n 2 Yc = p** * * 👙 👙 * ** $c = Y^{-1}p \Leftrightarrow Yc - p = 0$ 3 $c = Y^+ p \iff min(||Yc - p||)$ ********** 4

16ST2

Maha Fluid Power Research Center

Measurement Fitting

0

16ST2

Х

0.05

LS Fitting on N = 0

Measured Pressure Field 1200rpm, 1st harmonic (180 Hz)

х

Near-Field Holography In Progress

Pump Surface

Pump Surface

Far-field holography capture's only the propagating pressure waves

> The pressure field also includes **Evanescent waves,** which decay exponentially with distance.

Near-field holography capture's both the propagating and evanescent waves

Near-Field Arm

In Progress

16ST2

A near field arm is being manufactured.

An additional arm added to the robot will help improvements measurements:

- Easier / faster
- Repeatable

Paul Kalbfleisch Maha Fluid Power Resea

27

Propagation

Surface Vibrations Example 1200rpm

Structural Attenuation In Progress

- Consistent spikes in multiple accelerometers yield the structural modes and resonances.
- Relative phase of different pump locations reveals the mode shapes.
- A designer can

Paul Kalbfleisch

- Design valve plates based on 1. the Structural Attenuation
- Add mass/stiffness to effect the 2.

Structural Attenuation

30

Maha Fluid Power

Operational Modal Analysis

Basic Frequency Response Equation (SDOF) • $H(w) = \frac{X_1(w)}{X_2(w)} = FRF$ Magnitude (g/N) H(w) == FRF $\dot{\omega}_2 \omega_3$ ω Frequency (Hz)

(Avitabile, 2003)

Generation

Fast Pressure Sensors High Pressure Port (1200rpm, 200 bar)

Paul Kalbfleisch

33 Maha Fluid Power Research Maha Fluid Power

Conclusion and Future Work

Conclusions

- Maha's sound chamber has been successively remodeled.
- Preliminary measurements have been made to generate realistic data for analysis development.
- A few new analysis techniques have been highlighted

Future Work:

 Continue working on Analysis tools to fully map the oscillatory energy pathways.

Analysis Overview Pressure Mechanical Acoustical Pump Sound loading Response Radiation Response Structure of surfaces Mechanical Coupling Generation Perception **Propagation** Radiation Transmission Surface Acoustic Port Sound pressure normal pressures camera Intensity Bore velocity field **Far-Field** • Structural **Empirical Spherical** Pressure Sound Power Transfer attenuation Harmonics Pressure **ISO** Loudness Spectrums **Functions** Operational modal Pressure FFT Module sims Near-field holography 1/3 Octave

16ST2

Thank You Any Questions?

Paul Kalbfleisch Maha Fluid Power Research Cente