A National Science Foundation Engineering Research Center

Georgia Institute of Technology | Marquette University | Milwaukee School of Engineering | North Carolina A&T State University | Purdue University | University of California, Merced | University of Illinois, Urbana-Champaign | University of Minnesota | Vanderbilt University

Four-Quadrant Multi-Fluid Pump/Motor

James Marschand Graduate Researcher Purdue University Advisor- John Lumkes

Overview

- What is a four-quadrant multi-fluid pump/motor?
- Operating strategies
- Digital displacement control benefits
- Mechanically actuated prototype
- Model validation
- What are the next steps to develop an improved solution?

CENTER FOR COMPACT AND EFFICIENT FLU

KSF A National Science Foundation Engineering Research Center

Mechanically actuated valve prototype

Background

Digital Four Quadrant Multi-fluid Pump/Motor

CENTER FOR COMPACT AND EFFICIENT FLU

A National Science Foundation Engineering Research Center

- Digital: utilizes digital displacement control
 On/off valves at inlet and outlet of each piston
- Four-quadrant: capable of pumping and motoring each in CW and CCW rotation
- Multi-fluid: pump lubrication does not depend on operating fluid

2018 Industry- University Summit

A National Science Foundation Engineering Research Center

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

Operating Strategies

• Flow Diverting

- Excess flow taken into the chamber is diverted back to the low pressure port
- Flow Limiting
 - Amount of flow taken into the chamber is limited to the desired flow
- Sequential (Diverting or Limiting)
 - Individual cylinders are operated at full or zero displacement

Digital displacement control

2018 Industry- University Summit

Operating Strategies

• Flow Diverting

- Excess flow taken into the chamber is diverted back to the low pressure port
- Flow Limiting
 - Amount of flow taken into the chamber is limited to the desired flow
- Sequential (Diverting or Limiting)
 - Individual cylinders are operated at full or zero displacement

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

Digital displacement control

Benefits of Digital Displacement

Digital displacement control on/off valve placement

Digital Pump/Motor Advantages

CENTER FOR COMPACT AND EFFICIENT FLUID

- Higher efficiency across operating range
 - Eliminates valve plate and port plate
 - Leakages scale closely with displacement
- Pumping of non-conventional fluids (water)
- Valves can open against high pressure
 - Self starting in motoring
- Freedom in operating strategies
- Lower cost
 - No need for pilot pressure
 - No electrical energy needed

A National Science Foundation Engineering Research Center

Mechanically Actuated Valves

- First prototype use electrical actuation of on/off valves
- Mechanical actuation advantages
 - Fast and consistent
 - No electrical energy needed
 - No sensors or embedded controls
 - Actuation repeatability is increased
 - Critical for efficiency

Implementation

anner 0 0

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

A National Science Foundation Engineering Research Center

Prototype

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

A National Science Foundation Engineering Research Center

A National Science Foundation Engineering Research Center

Experimental Test Stand

Multi-piston digital pump/motor test stand

- 3-piston digital pump
- One on/off valves per piston
- One check valve per piston
- Three 2,000 Hz pressure transducers
- Two accumulators

A National Science Foundation Engineering Research Center

Experimental Testing

A National Science Foundation Engineering Research Center

Results for Mechanical Actuation

Overall hydraulic efficiency for pumping at 300rpm (left), 500rpm (right)

- Partial flow diverting only operating strategy tested
- Efficiency does not fall below 40%

GT Suite Overview

- 1D multi-physics system simulation software
- GT-Suite Tools
 - CAD modeling and preparation
 - Converting 3D CAD model into GT model
 - Model building and run control
 - Post processing
- Hydraulics applications
 - System and component level models
 - Existing piston pump and valve component templates
 - Accurate pressure wave dynamics
 - Advanced features such as DoE and optimization

GT-

SpaceClaim

KSF A National Science Foundation Engineering Research Center

GT-P

OST

A National Science Foundation Engineering Research Center

MAV Inline Schematic

CENTER FOR COMPACT AND EFFICIENT FLUID POWER A National Science Foundation Engineering Research Center **CAD Model Preparation** \odot \bigcirc \bigcirc \bigcirc \bigcirc 0 O Flow volumes selected Solid block Flow volumes extracted

A National Science Foundation Engineering Research Center

Converting to GT Components

Split into individual parts

Converted into pipes and flow-splits

2018 Industry- University Summit

17

A National Science Foundation Engineering Research Center

Model Geometry

GT-ISE components

A National Science Foundation Engineering Research Center

MAV Inline Simulation

A National Science Foundation Engineering Research Center

One Piston Simulation

2018 Industry- University Summit

Inlet

A National Science Foundation Engineering Research Center

One Piston Simulation

A National Science Foundation Engineering Research Center

One Piston Simulation

A National Science Foundation Engineering Research Center

One Piston Simulation

KNSF A National Science Foundation Engineering Research Center

One Piston Simulation

On/off valve

- Valve opening area
- Poppet parameters

2018 Industry- University Summit

Inlet

A National Science Foundation Engineering Research Center

One Piston Simulation

End Environment

- Constant pressure
- Initial temperature and fluid conditions
- Represent constant pressure of accumulator

A National Science Foundation Engineering Research Center

MAV Inline Simulation

103 bar, 500 rpm, 100% displacement

103 bar, 500 rpm, 25% displacement

A National Science Foundation Engineering Research Center

Inline Simulation Results

A National Science Foundation Engineering Research Center

Next Generation MAV

- Optimal design, open-ended best system
- Requirements
 - One cam assembly for all pistons
 - Minimal gearing
 - Smaller physical size
 - Four quadrant capability

Radial Piston Orientation Center

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

Benefits

- Access to valves
- Thru-shaft
- Modular and compact design

(1)

• Fewer moving parts

2

Summary and Future Work

- Tested inline unit on existing digital pump/motor test stand
 - Results provided proof of concept for mechanical actuation
- Modeled and simulated inline unit
 - Validated modeling techniques
- Next steps
 - Model and simulate radial unit
 - Use simulation to determine optimal pump parameters

KNSF A National Science Foundation Engineering Research Center

Contact Information

31

James Marschand

jmarsch@purdue.edu Dept. of Ag. & Bio. Eng. 225 S. University St. West Lafayette, IN 47907

