CENTER FOR COMPACT AND EFFICIENT FLUID POWER

KSF A National Science Foundation Engineering Research Center

Georgia Institute of Technology | Marquette University | Milwaukee School of Engineering | North Carolina A&T State University | Purdue University of California, Merced | University of Illinois, Urbana-Champaign | University of Minnesota | Vanderbilt University

Free Piston Engine Based Off-Road Vehicles

Keyan Liu, Research Assistant (presenter) Chen Zhang, Research Assistant University of Minnesota Advisor: Prof. Zongxuan Sun

Outline

- Project overview
- Realization of Independent pressure and flow control
 - Basic principle and efficiency analysis
 - Robust realization
- Consecutive combustion tests
 - Scavenging improvement
 - Consecutive combustion test results
- Summary and future work

CENTER FOR COMPACT AND EFFICIENT FLUID POWER A National Science Foundation Engineering Research Center OPOC FPE and Previous Work

Modular and flexible fluid power source that removes or reduces throttling loss

- Previous work
 - Improvement of hardware
 - System modeling
 - Virtual crankshaft
 - Motoring
 - Combustion
 - Trajectory based combustion control

Independent CENTER FOR COMPACT AND EFFICIENT FLUID POWER A National Science Foundation Engineering Research Center Pressure and Flow Rate Control

Realization: General Structure

- A feedforward controller provide the fuel amount reference, valve command and optimal operation CR reference based on the load pressure and flow rate demand
- A feedback CR controller calculate the actual CR of the FPE adjust the fuel amount to track the CR reference
- An outer loop feedback controller adjust the flow command to the feedforward controller based on actual flow rate to track the flow demand from user

CENTER FOR COMPACT AND EFFICIENT FLUID POWE

A National Science Foundation Engineering Research Center

Simulation Result

- The FPE operates stably under IPFC
- The instantaneous flow shows the predicted profile
- The flow rate can be properly controlled under steady states.

Pressure: 15MPa High Flow: 5×10⁻⁴m³/s, or 65.5% Low Flow: 2×10⁻⁴m³/s, or 26.2%

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

A National Science Foundation Engineering Research Center

Simulation Result

Simulation Result

• The flow rate demand can be properly tracked under continuously changing load pressure.

CENTER FOR COMPACT AND EFFICIENT FLUID

A National Science Foundation Engineering Research Center

• The step response time of the system is in the order of tens of milliseconds.

Optimal working parameter

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

A National Science Foundation Engineering Research Center

Pressure: 15MPa

Optimal working parameter

A National Science Foundation Engineering Research Center

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

Efficiency Analysis

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

A National Science Foundation Engineering Research Center

Efficiency Analysis

Pressure: 15MPa

Independent CENTER FOR COMPACT AND EFFICIENT FLUID POWER A National Science Foundation Engineering Research Center Pressure and Flow Rate Control Realization: General Structure

- The virtual crankshaft is incorporated into the architecture
- Depending on the measured load pressure and flow demand, the feedforward controller gives the fuel amount, reference valve command and reference trajectory
- The virtual crankshaft regulate the valve signal to track the reference trajectory

- 3 2 1 Net Hydarulic Force(N) 4000 2000 0 -2000 -4000 -0.8 -0.6 -0.4 -0.2 0.2 0.4 0.8 0.6 -1 1 $\times 10^{-3}$ 2 Output Flowrate(m³/s) 1 0 -1 -2 -0.8 -0.6 -0.2 0.2 0.4 0.6 0.8 -1 -0 1 Servo Valve Opening(Normalized)
- Feedforward on pumping part; virtual crankshaft on dumping part
- Nominal working point @ 80% servo valve opening
- Virtual crankshaft regulate opening around this point

KSF A National Science Foundation Engineering Research Center

CENTER FOR COMPACT AND EFFICIENT FLUID

22

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

- Feedforward on pumping part; virtual crankshaft on dumping part
- Nominal working point @
 80% servo valve opening
- Virtual crankshaft regulate opening around this point

Robust Realization: Transient

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

Consecutive CENTER FOR COMPACT AND EFFICIENT FLUID POWER **Combustion Tests** Improvement of scavenging

Fresh charge sweeps through the chamber

- Port opening is coupled with piston motion
- IntakeAmount = f(Portsize, intake pressure, port open order, open duration, chamber pressure)

Consecutive CENTER FOR COMPACT AND EFFICIENT FLUID POWER **Combustion Tests** Improvement of scavenging

Fresh charge sweeps through the chamber

- Port opening is coupled ٠ with piston motion
- IntakeAmount = f(Port• size, intake pressure, port open order, open duration, chamber pressure)

Fresh charge sweeps through the chamber

- Port opening is coupled ٠ with piston motion
- IntakeAmount = f(Port• size, intake pressure, port open order, open duration, chamber pressure)

Consecutive Combustion Tests

Consecutive combustions

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

Consecutive Combustion Tests

From motoring to combustion

CENTER FOR COMPACT AND EFFICIENT FLUID

Consecutive Combustion Tests

Combustion heat release

CENTER FOR COMPACT AND EFFICIENT FLUID

A National Science Foundation Engineering Research Center

POWER

Consecutive CENTER FOR COMPACT AND EFFICIENT FLUID POWER A National Science Foundation Engineering Research Center Combustion Tests Foundation for experimental validation

Summary and future work rer for compact and efficient fluid power

• Simulation results shows that with proper control of valve command and fuel injection, the FPE can work as a digital fluid power source with very short response time.

• Efficiency analysis shows that the optimal working conditions can be found and the overall system efficiency is higher than the current solutions.

• With the supercharger system and optimized piston motion/port order, scavenging process is improved and consecutive/repeatable combustion is realized.

• Experimental validation of IPFC will be conducted by implementing the proposed control strategy on the test bed.

