A fluid solution to efficient power

David B Gray NA OEM Manager October 2017

Overview

Can Hydraulic systems be made more efficient just by changing the fluid?

How are efficient fluids different?

How can we demonstrate productivity advantages of efficient fluids?

Who are Evonik?

- One of the World's leading specialty chemicals companies
- Global footprint
 - Sales Offices in over 35 countries
 - Sales in more 100 countries
 - Manufacturing Worldwide
- 34,350 employees

What does
Resource
Efficiency
mean to you?

" We all tal	lk about fluid power b	out rarely talk about th	e fluid "

" We all talk about fluid power but rarely talk about the fluid"

Economic Forces

Technology Changes

Social **Trends**

Environmental Issues

Political Influences

Economic Forces

Technology Changes Social Trends

Environmental Issues

Political Influences

Economic Forces

- Total cost of ownership
- High productivity and reliability

Technology Changes Social Trends

Environmental Issues

Political Influences

Economic Forces

Technology Changes

- Higher pressures
- Smaller volumes
- Higher power density
- Industry 4.0

Social **Trends**

Environmental Issues

Political Influences

Economic Forces

Technology Changes

Social **Trends**

- Quality awareness
- Compliance

Environmental Issues

Political Influences

Economic Forces

Technology Changes

Social **Trends**

Environmental Issues

- Reduced noise levels
- **Emission** reduction
- Lifecycle analysis

Political Influences

Economic Forces

Technology Changes

Social **Trends**

Environmental Issues

Political Influences

- Tax credits
- Political targets / Regulations e.g. **EU** Directive (2012/27/EU)

How can "efficient fluids" help end users?

- Reduce energy consumption, fuel or electric power
- Maintain optimum power and productivity
- Provide long service life reduced heat
- Ensure equipment protection and durability

Definitions of Energy Efficiency and Productivity

- Energy Efficiency = work done/energy consumed
- Productivity = work done/time

Most good IDEAS start with a question...

THE QUESTION How can the efficiency of hydraulic equipment be improved?

Improved efficiency with High VI multigrade hydraulic fluids

High VI fluids are a technology for improving the flow characteristics of hydraulic fluids

- Provide lower viscosity at colder temperatures
 - Especially at start up, less power required
- Resists internal leakage in the pump at higher temperatures
 - Avoids overheating
- Maintains pump efficiency
 - Reduced fuel consumption
 - Increased service life

Where can High VI efficient fluids be applied?

Hydraulic Fluids

Stationary, e.g. Injection Molding

- Plastic processing industry
- Simple hydraulic monograde fluids
- High potential to improve efficiency

Mobile, e.g. Excavators

- Developing markets
- Conventional multigrade fluids
- High potential to improve efficiency

Where can High VI efficient fluids be applied?

Hydraulic Fluids

Stationary, e.g. Injection Molding

- Plastic processing industry
- Simple hydraulic monograde fluids
- High potential to improve efficiency

Mobile, e.g. Excavators

- Developing markets
- Conventional multigrade fluids
- High potential to improve efficiency

Multigrade vs Monograde Hydraulic fluids

The higher the Viscosity Index (VI)

... the *flatter* the curve!

System efficiency depends on two loss mechanisms

Hydrodynamic friction

Churning losses

Poor lubrication

Heat losses

Internal leakage

External leakage

The influence of viscosity on the overall efficiency of a hydraulic pump

How does it work?

The Hydraulic fluid determines TOW and energy efficiency

The Hydraulic fluid determines TOW and energy efficiency

Not all high VI hydraulic fluids improve efficiency

- The fluids evaluated are ISO VG 46 VI 150 & 200 based on Viscosity Index Improvers of different shear stability in mineral oils.
- The efficiency is a function of the dynamic viscosity within the pump

Only shear-stable, high VI fluids deliver significant efficiency improvements.

Performance Demonstrations

Performance Demonstrations

Excavator Specifications and Field Test Activities – Test Protocol

Hitachi ZX290

Digging

Truck Loading

Hitachi ZX 290:

- Engine: Isuzu AL-4HKK1X 140 kW (188 HP) at 2 100 rpm
- Hydraulic pumps: 3 axial piston pumps and 1 pilot gear pump
- Hydraulic system: 290 L and hydraulic oil tank: 156 L

Field Test Daily Routine:

- Truck loading (32 times with 12 buckets / truck loading)
- Digging (8 times with 10 minutes / digging)
- Hydraulic fluid is tested for 4 days (oil temp: 50°C 90°C)

Excavator Specifications and Field Test Activities – Test Protocol

Hitachi ZX290

Digging

Truck Loading

Hitachi ZX 290:

- Engine: Isuzu AL-4HKK1X 140 kW (188 HP) at 2 100 rpm
- Hydraulic pumps: 3 axial piston pumps and 1 pilot gear pump
- Hydraulic system: 290 L and hydraulic oil tank: 156 L

Field Test Daily Routine:

- Truck loading (32 times with 12 buckets / truck loading)
- Digging (8 times with 10 minutes / digging)
- Hydraulic fluid is tested for 4 days (oil temp: 50°C 90°C)

Excavator Specifications and Field Test Activities – Test Protocol

Hitachi ZX290

Digging

Truck Loading

Hitachi ZX 290:

- Engine: Isuzu AL-4HKK1X 140 kW (188 HP) at 2 100 rpm
- Hydraulic pumps: 3 axial piston pumps and 1 pilot gear pump
- Hydraulic system: 290 L and hydraulic oil tank: 156 L

Field Test Daily Routine:

- Truck loading (32 times with 12 buckets / truck loading)
- Digging (8 times with 10 minutes / digging)
- Hydraulic fluid is tested for 4 days (oil temp: 50°C 90°C)

Measurements and Monitoring System – Data Capture

Temperature & pressure sensors

Ambient temp.sensor

Hydraulic oil tank temp. sensor

Hydraulic

tank

Flowmeter, temp.sensor

Engine fan speed sensor & box controller

Universal data acquisition system

Display shows live-measurement

- A range of instrumented excavators in comprehensive tests
- Accurate recording of the saving potential depending on the type of use
- Robust protocols ensure statistically valid data

	Fuel consumption per cycle	Efficiency increase (buckets per liter of fuel)	Productivity increase (buckets per cycle)
Leveling	-	Up to 4%	_
Drive mode (meters)	_	Up to 11 %	Up to 8 %
Digging (at full speed)	Up to 5%	Up to 15 %	Up to 15 %

- A range of instrumented excavators in comprehensive tests
- Accurate recording of the saving potential depending on the type of use
- Robust protocols ensure statistically valid data

	Fuel consumption per cycle	Efficiency increase (buckets per liter of fuel)	Productivity increase (buckets per cycle)
Leveling	-	Up to 4%	_
Drive mode (meters)	_	Up to 11 %	Up to 8 %
Digging (at full speed)	Up to 5%	Up to 15 %	Up to 15 %

- A range of instrumented excavators in comprehensive tests
- Accurate recording of the saving potential depending on the type of use
- Robust protocols ensure statistically valid data

	Fuel consumption per cycle	Efficiency increase (buckets per liter of fuel)	Productivity increase (buckets per cycle)
Leveling	_	Up to 4%	_
Drive mode (meters)	_	Up to 11 %	Up to 8 %
Digging (at full speed)	Up to 5%	Un to 15 %	I In to 15 %

- A range of instrumented excavators in comprehensive tests
- Accurate recording of the saving potential depending on the type of use
- Robust protocols ensure statistically valid data

	Fuel consumption per cycle	Efficiency increase (buckets per liter of fuel)	Productivity increase (buckets per cycle)
Leveling	_	Up to 4%	-
Drive mode (meters)	_	Up to 11 %	Up to 8 %
Digging (at full speed)	Up to 5%	Up to 15 %	Up to 15 %

- A range of instrumented excavators in comprehensive tests
- Accurate recording of the saving potential depending on the type of use
- Robust protocols ensure statistically valid data

	Fuel consumption per cycle	Efficiency increase (buckets per liter of fuel)	Productivity increase (buckets per cycle)
Leveling	-	Up to 4%	-
Drive mode (meters)	_	Up to 11 %	Up to 8 %
Digging (at full speed)	Up to 5%	Up to 15 %	Up to 15 %

High VI Multigrade fluid DYNAVIS® performance demonstrations

Construction Industry

Schrode GmbH - Germany

New Holland crawler excavator Application:

Earth moving and road construction

Effect:

10 to 15% during normal use up to 25% during stone milling

Vakaru Verslo Projektai – Lithuania

Kleemann, mobile screening unit Application: Sand sieving

Effect:

Saves 3 liters fuel per operating hour, better cold start behavior

Screen-Renting BVBA - Belgium

Hitachi ZX210W mobile excavator. Application: Material handling

Saves 2 liters fuel per operating hour, no more failures caused by overheating

Ghizzoni S.p.A. - Italy

New Holland E385B crawler excavator. Application:

Restoring a pipeline route

Where can High VII efficient fluids be applied?

Hydraulic Fluids

Stationary, e.g. Injection Molding

- Plastic processing industry
- Simple hydraulic monograde fluids
- High potential to improve efficiency

Mobile, e.g. Excavators

- Developing markets
- Conventional multigrade fluids
- High potential to improve efficiency

Where can High VI efficient fluids be applied?

Hydraulic Fluids

Stationary, e.g. Injection Molding

- Plastic processing industry
- Simple hydraulic monograde fluids
- High potential to improve efficiency

Mobile, e.g. Excavators

- Developing markets
- Conventional multigrade fluids
- High potential to improve efficiency

Performance demonstrations

Equipment		Energy savings	Hydraulic Fluid
3 5	Husky XL300	4.2 %	Extended operating window
	Krauss Maffei KM 80 CX SP 380	up to 5 %	Same protection at high T
	Engel Victory 330/120	6.2 %	4646
21	Boy 35 E	up to 10 %	32
	Haitian MA10000 II	11 %	Temperature 40°C 100°C
Theory	Development in laboratory	Bench tests	Performance demonstrations

Conclusions

Gains in Productivity and Efficiency can be realized by switching to High VI Multigrade fluids.

Efficient fluids differ from conventional fluids by using shear stable, High VI components.

Productivity and Efficiency gains can be demonstrated by developing robust testing protocols and performing 'real world' testing.

" We all talk about fluid power but rarely talk about the fluid"

Efficiency for end user

Work done within excavator
$$\mu_{fuel} \cdot t \cdot Q_{HV} \cdot \eta_{ICE} \cdot \eta_{HS} = m \cdot Q_{MG}$$
 Fuel consumed

- μ_{fuel} average fuel mass flow rate, kg/h
- Q_{HV} heating value of fuel, J/kg
- η_{ICE} average efficiency of the internal combustion engine
- η_{HS} average efficiency of the entire hydraulic system

- t time consumed to move gravel with mass m, h
- m gravel mass to be moved, kg
- $lacktriangledown Q_{MG}$ average specific work needed to move gravel, J/kg

Lubricant product development and its path to market

