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Goals gai ﬂ

* NSF PFI-TT Program:

— Partnerships for Innovation: Technology Transfer
— Program Goal: Advance previously NSF supported research
towards commercialization
* Project Goal: Develop a prototype of a reciprocating high
pressure (~200bar), high efficiency, liquid piston gas
compressor
— Start date: 9/1/2018
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Outline

* Motivation / applications

* Challenge of isothermal gas compression/expansion
* Our approach and previous work
« Current research
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Motivation: @ ﬂ

« Grid scale energy storage as compressed air (CAES)

« Carbon dioxide sequestration / reuse

 Industrial gas




Grid scale energy storage

 Renewable energies — abundant but also
intermittent

* Requires fossil fuel powered “peaker”
plants to supplement when renewables
not available

« Storage can replace peaker plants
— Increase revenue via price arbitrage
— Stabilize electrical grid frequency




N 4
Compressed air energy storage “g:% ﬂ

» Potentially cost effective for long duration (10-100hours):

— Competition - Lithium battery:
« Cost $270/kWh (2016), short life, rare materials.
— Isothermal compressed air energy storage (200-350bar)

« Engineered pressure vessels: $40-80/kWh
« Underground caverns: $5/kWh

— Energy density of “open accumulator” CAES:
« 25kWh/m3 (210bar) and 47kWh/m?3 (350bar)

— 20 times higher than closed hydraulic accumulator at similar pressures
— 5.5 times of conventional CAES

.
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» High pressure, efficient and high power (fast) gas
compressor/expander:

— Key for isothermal compressed air energy storage

— Other applications:
« CO2 compression prior to transport for sequestration or reuse
* Industrial gas compression:
— Linde, Praxair & Air Products together consume 1% of U.S. electricity
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Challenge in Air Compression / Expansion Process *t:gg\ ﬂ
Q

1. Compression : (Po, To) =2 (rPg, Tp)

2. Constant-pressure cooling :  (rPy, T.) =2 (rPg, Tp)

3. Expansion: (rPo, To) 2 (Po, Te)
TPU'

Win

W out

Assume heat source & sink at
Isothermal ambient temp T,

Pressure




Power = Work / Time

First law : mC,T = —PV —h-A- T — Tp

Q: heat transfer

Time taken: mC,d1 + PdV

* P-V-T curve — determines work and efficiency
* Heat transfer — determines time
« Decreasing time increases power = lower capital cost

Adiabatic (=350, T,=298K): t=0  Isothermal (T;=298K):  Target:
Comp./expan temp: 1583K/56K ¢ Efficiency = 100% Eff: 90-95%
Efficiency < 35-38% « t=infinite t=1to2s
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Our approach:

Improve heat transfer during
compression/expansion process




Liquid Piston C/E with Porous Media R

Qa
Model From L .
REV11_2 Atmosphere g )
(low pressure) | ., To Storage
U - S Vessel

(high pressure)

Porous Material

Prpaa. |
prespion
)\ )\ hambler

Porous material 2 increase surface area
Reduce dead-volume
Good, low friction seal Liquid Piston

Liquid piston trajectory controllable! —@— pump/motor
S
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Effect of porous media (7- 210 bar) : Experiments

1
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Design of LP Compressor/Expander

 Choice and distribution e
of HX porous media
— Heat transfer vs HX distribution,
' shape
space/cost, drag
h 4
* Choice of shape Find Optimal
.. Traject
— Heat transfer coefficient il
vs liquid drag l
* Choice of flow (control) No
trajectories —

— Efficiency vs power

l Yes




Pareto Optimal Compression/ Expansion
Control Problem

Given shape and porous media design, find P-V path s.t. either

1. For a given efficiency (fixed work), power is maximized
(minimize time); or

2. For a given power (time), efficiency is optimized (minimize

compression work or maximize expansion work)

Isobaric cooling

______ . rP“““ e
T__> Pareto frontier 0

I
: / Compression
I

Lo

Efficiency

Feasible :region

' >

Power : Work/time P,

(* With Caleb Sancken, Andrew Rice and Mohsen Saadat)
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Efficiency-Power trade-off (theoretical) 3
Constant hA, 350:1 comp ratio
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Optimal profile increases power for the same efficiency
by 3 to 5 times over linear and sinusoidal profiles
Increases efficiency by 15%-20%
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Optimal Design of Compressor/Expander 3

 HX porous media distribution
— Heat transfer vs. space/cost, drag,

>  Generate design

gas/liquid trapping
R Shape SHr:(as(iastribution,
— Heat transfer coefficient. vs liquid drag ¥
and length constraint Find Optimal
Trajectory bP

Porosity distribution A ‘
: l
R(x) No
D(x) L Evaluate
Performance

Fix mean porosity | l Yes
(total porous media) Fixed volume
d < Pp(x) R<R(x) L<L




Optimal Design Results (92%eff) %
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Previous experimental compressor/expander T

Pressure: 7bar to 210bar,
Time: >2sec
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Previous experimental system “g:% ﬂ

 Emphasizes validating thermodynamic states
« Controllable flow
* Accurate measurements (pressure, volume etc.)

* Only capable of 1 compression and 1 expansion stroke
* Inefficiency liquid piston generation
« Cannot store compressed air

A
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Current 5kW prototype design Atmosphers &S ﬂ

(low pressure)

Repeated operation: i Vessel

* Reciprocating, multi-cycle
Input-output:

» Shaft power €-> compressed air storage
Optimize cost instead of size

(hlgh pressure)

1presEion
4\ hambger

—

Challenges: Valve design; liquid piston

sensing and control; dead-volume
Liquid Piston

management; efficient PTO _@_ pump/motor
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Summary gaz ﬂ

 |sothermal gas compressor/expander have wide market
potential for green economy

» Key challenge: high efficiency AND high power
* Previous research has shown:

— optimized liquid piston w/ porous media C/E approach achieves
200x increased power density at 92% efficiency

 Current research aims to create and validate a
reciprocating prototype based on concept

e
»
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