

October 17, 2018

LIQUID PISTON GAS COMPRESSOR FOR COMPRESSED AIR ENERGY STORAGE (CAES) & CARBON DIOXIDE SEQUESTRATION

Perry Y. Li, Terry Simon, and Jim Van de Ven Kevin Nickels, Aleksander Gust and Brian Carrier

Department of Mechanical Engineering University of Minnesota

Funded by NSF PFI-TT Program

http://www.me.umn.edu/~lixxx099/ http://www.me.umn.edu/~lixxx099/EFRI_CAES

Goals

- NSF PFI-TT Program:
 - Partnerships for Innovation: Technology Transfer
 - Program Goal: Advance previously NSF supported research towards commercialization
- Project Goal: Develop a prototype of a reciprocating high pressure (~200bar), high efficiency, liquid piston gas compressor
 - Start date: 9/1/2018

Outline

- Motivation / applications
- Challenge of isothermal gas compression/expansion
- Our approach and previous work
- Current research

Motivation:

• Grid scale energy storage as compressed air (CAES)

Carbon dioxide sequestration / reuse

Industrial gas

Grid scale energy storage

- Renewable energies abundant but also intermittent
- Requires fossil fuel powered "peaker" plants to supplement when renewables not available
- Storage can replace peaker plants
 - Increase revenue via price arbitrage
 - Stabilize electrical grid frequency
 - and

Compressed air energy storage

- Potentially cost effective for long duration (10-100hours):
 - Competition Lithium battery:
 - Cost \$270/kWh (2016), short life, rare materials.
 - Isothermal compressed air energy storage (200-350bar)
 - Engineered pressure vessels: \$40-80/kWh
 - Underground caverns: \$5/kWh
 - Energy density of "open accumulator" CAES:
 - 25kWh/m³ (210bar) and 47kWh/m³ (350bar)
 - 20 times higher than closed hydraulic accumulator at similar pressures
 - 5.5 times of conventional CAES

Open Accumulator Isothermal CAES

NSF – Emerging Frontier Research and Innovation: (2010-2016) #1038294

- High pressure, efficient and high power (fast) gas compressor/expander:
 - Key for isothermal compressed air energy storage
 - Other applications:
 - CO2 compression prior to transport for sequestration or reuse
 - Industrial gas compression:

– Linde, Praxair & Air Products together consume 1% of U.S. electricity

Challenge in Air Compression / Expansion Process

- 1. Compression :
- 2. Constant-pressure cooling :
- **3**. Expansion:

$$(P_0, T_0) \rightarrow (rP_0, T_c)$$

$$(rP_0, T_c) \rightarrow (rP_0, T_0)$$

$$(rP_0, T_0) \rightarrow (P_0, T_e)$$

Power = Work / Time

First law : $mC_v\dot{T} = -P\dot{V} - \underbrace{h\cdot A\cdot[T-T_0]}_{h\cdot A\cdot[T-T_0]}$

Q: heat transfer

Time taken:

$$t_{c/e} = \int dt = \int \frac{mC_v dT + PdV}{Q}$$

- P-V-T curve determines work and efficiency
- Heat transfer determines time
- Decreasing time increases power → lower capital cost

Adiabatic (r=350, T_0 =298K): t = 0

- Comp./expan temp: 1583K/56K
- Efficiency < 35-38%

Isothermal (T₀=298K):

• Efficiency = 100%

Target: Eff: 90-95% t =1 to 2 s

Improve heat transfer during compression/expansion process

Liquid Piston C/E with Porous Media

• Porous material \rightarrow increase surface area

- Reduce dead-volume \bullet
- Good, low friction seal
- Liquid piston trajectory controllable!

Effect of porous media (7-210 bar) : Experiments

10x increase in power density

10-15% increase in efficiency

Design of LP Compressor/Expander

- Choice and distribution
 of HX porous media
 - Heat transfer vs.
 space/cost, drag
- Choice of shape
 - Heat transfer coefficient vs liquid drag
- Choice of flow (control) trajectories
 - Efficiency vs power

Pareto Optimal Compression/ Expansion Control Problem

Given shape and porous media design, find P-V path s.t. either

- For a given efficiency (fixed work), power is maximized (minimize time); or
- 2. For a given power (time), efficiency is optimized (minimize compression work or maximize expansion work)

(* With Caleb Sancken, Andrew Rice and Mohsen Saadat)

Efficiency-Power trade-off (theoretical)

Optimal profile increases power for the same efficiency by 3 to 5 times over linear and sinusoidal profiles Increases efficiency by 15%-20%

Efficiency-Power trade-off (experimental)

> 2x power density or 5-10% increase in efficiency

Optimal Design of Compressor/Expander

- HX porous media distribution
 - Heat transfer vs. space/cost, drag, gas/liquid trapping
- Shape
 - Heat transfer coefficient. vs liquid drag and length constraint

Optimal Design Results (92%eff)

	Porosity	Flow Rate	Shape	0-D Model	
				time	Power Density
Case # 1	80% Uniform	Constant	Uniform (21.5 cm ²)	33 sec	71.2 kW/m ³
Case # 2	80% Uniform	Optimal	Uniform (21.5 cm ²)	11 sec	217.3 kW/m ³
Case # 3	80% Optimal	Constant	Uniform (21.5 cm ²)	9.6 sec	245.6 kW/m ³
Case # 4	80% Optimal	Optimal	Uniform (21.5 cm ²)	3.5 sec	669.3 kW/m ³
Case # 5	80% Optimal	Optimal	Optimal (L=69 cm)	1.6 sec	1.47 MW/m ³

Opt. Porosity: 3x improvement, as much porous media at the top Opt. Shape: 2x improvement, narrow at top

33 sec \rightarrow 1.6 sec (20 x improvement over uniform porous media)

Previous experimental compressor/expander

J. Wieberdink and B. Yan

Previous experimental system

- Emphasizes validating thermodynamic states
- Controllable flow
- Accurate measurements (pressure, volume etc.)

- Only capable of 1 compression and 1 expansion stroke
- Inefficiency liquid piston generation
- Cannot store compressed air

Current 5kW prototype design

Repeated operation:

- Reciprocating, multi-cycle
 Input-output:
- Shaft power $\leftarrow \rightarrow$ compressed air storage

Optimize cost instead of size

Challenges: Valve design; liquid piston sensing and control; dead-volume management; efficient PTO

Summary

- Isothermal gas compressor/expander have wide market potential for green economy
- Key challenge: high efficiency <u>AND</u> high power
- Previous research has shown:
 - optimized liquid piston w/ porous media C/E approach achieves
 200x increased power density at 92% efficiency
- Current research aims to create and validate a reciprocating prototype based on concept

