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Goals
• NSF PFI-TT Program:

– Partnerships for Innovation: Technology Transfer 
– Program Goal: Advance previously NSF supported research 

towards commercialization 
• Project Goal: Develop a prototype of a reciprocating high 

pressure (~200bar), high efficiency, liquid piston gas 
compressor 
– Start date: 9/1/2018
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Outline
• Motivation / applications
• Challenge of isothermal gas compression/expansion
• Our approach and previous work
• Current research
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Motivation:

• Grid scale energy storage as compressed air (CAES)

• Carbon dioxide sequestration / reuse

• Industrial gas
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Grid scale energy storage
• Renewable energies – abundant but also 

intermittent
• Requires fossil fuel powered “peaker” 

plants to supplement when renewables 
not available

• Storage can replace peaker plants
– Increase revenue via price arbitrage
– Stabilize electrical grid frequency
– and …..
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Compressed air energy storage
• Potentially cost effective for long duration (10-100hours):

– Competition - Lithium battery: 
• Cost $270/kWh (2016), short life, rare materials. 

– Isothermal compressed air energy storage (200-350bar)
• Engineered pressure vessels: $40-80/kWh
• Underground caverns: $5/kWh

– Energy density of “open accumulator” CAES: 
• 25kWh/m3 (210bar) and 47kWh/m3 (350bar)

– 20 times higher than closed hydraulic accumulator at similar pressures
– 5.5 times of conventional CAES
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Open Accumulator Isothermal CAES
• Hydraulic transmission
• Open accumulator
• Near isothermal air 

compressor/ expander
• No need for fossil fuel

NSF – Emerging Frontier Research and Innovation: (2010-2016) #1038294 
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• High pressure, efficient and high power (fast) gas 
compressor/expander:
– Key for isothermal compressed air energy storage

– Other applications:
• CO2 compression prior to transport for sequestration or reuse
• Industrial gas compression: 

– Linde, Praxair & Air Products together consume 1% of U.S. electricity 
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Challenge in Air Compression / Expansion Process

Assume heat source & sink at 
ambient temp T0

1. Compression :             (P0,  T0)  (rP0, Tc) 
2. Constant-pressure cooling :  (rP0, Tc)  (rP0, T0)
3. Expansion:                    (rP0, T0) (P0,  Te)

6
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Power = Work / Time

Adiabatic (r=350, T0=298K):   t = 0
• Comp./expan temp: 1583K/56K
• Efficiency <  35-38%

First law : 

• P-V-T curve – determines work and efficiency
• Heat transfer – determines time 
• Decreasing time increases power  lower capital cost

Time taken:

Isothermal (T0=298K): 
• Efficiency = 100%
• t = infinite

Target: 
Eff: 90-95% 
t =1 to 2 s
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Our approach: 

Improve heat transfer during 
compression/expansion process
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From 
Atmosphere

(low pressure) To Storage 
Vessel 

(high pressure)

Porous Material Compression 
Chamber

Liquid Piston 
pump/motor

Liquid Piston C/E with Porous Media

• Porous material  increase surface area
• Reduce dead-volume
• Good, low friction seal 
• Liquid piston trajectory controllable!
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Effect of porous media (7- 210 bar) : Experiments

10x 
increase 
in power 
density

10-15% 
increase 

in 
efficiency
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Design of LP Compressor/Expander

• Choice and distribution 
of HX porous media
– Heat transfer vs. 

space/cost, drag
• Choice of shape

– Heat transfer coefficient 
vs liquid drag 

• Choice of flow (control) 
trajectories
– Efficiency vs power

Generate design

Find Optimal
Trajectory

HX distribution, 
shape

Evaluate 
Performance

Yes

No
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Pareto Optimal Compression/ Expansion 
Control Problem
Given shape and porous media design, find P-V path s.t. either
1. For a given efficiency (fixed work), power is maximized 

(minimize time); or
2.  For a given power (time), efficiency is optimized (minimize 
compression work or maximize expansion work)

(* With Caleb Sancken, Andrew Rice and Mohsen Saadat) 
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Efficiency-Power trade-off (theoretical) 
Compressor

Motor

Optimal profile increases power for the same efficiency
by 3 to 5 times over linear and sinusoidal profiles

Increases efficiency by 15%-20%

Constant hA,   350:1 comp ratio
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Flow Rate Efficiency Compression 
Time

Power Density 
(based on air volume)

Baseline Constant
(43.2 cc/s) 92% 33 sec 71.2 kW/m3

DP Optimal Flow Variable 92% 10.8 sec 217.3 kW/m3

Constant Flow (baseline)

Optimal Flow (DP)

Similar to A-I-A 

300% faster 
(smaller) !!! 

Realistic 
heat 

transfer 
model

Simulations
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Efficiency-Power 
trade-off 

(experimental)

> 2x power density
or 5-10% increase in 

efficiency 
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Optimal Design of Compressor/Expander
• HX porous media distribution 

– Heat transfer vs. space/cost, drag, 
gas/liquid trapping

• Shape
– Heat transfer coefficient. vs liquid drag 

and length constraint 

Generate design

Find Optimal
Trajectory

HX distribution, 
shape

Evaluate 
Performance

Yes

No

DP

R(x)
∅(𝑥𝑥)

Fix mean porosity
(total porous media) Fixed volume

L

𝑅𝑅 ≤ 𝑅𝑅(𝑥𝑥) 𝐿𝐿 ≤ 𝐿𝐿

Porosity distribution

x
x

𝜙𝜙 ≤ 𝜙𝜙(𝑥𝑥)
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80% mean
porosity

Optimal Design Results (92%eff)
Porosity Flow Rate Shape

0-D Model

time Power Density

Case # 1 80% Uniform Constant
Uniform

(21.5 cm2) 33 sec 71.2 kW/m3

Case # 2 80% Uniform Optimal
Uniform

(21.5 cm2) 11 sec 217.3 kW/m3

Case # 3 80% Optimal Constant
Uniform

(21.5 cm2) 9.6 sec 245.6 kW/m3

Case # 4 80% Optimal Optimal Uniform
(21.5 cm2) 3.5 sec 669.3 kW/m3

Case # 5 80% Optimal Optimal Optimal
(L=69 cm) 1.6 sec 1.47 MW/m3

Opt. Porosity: 3x improvement, as much 
porous media at the top

Opt. Shape: 2x improvement, narrow at top  

33 sec  1.6 sec  (20 x improvement over uniform porous media)
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Previous experimental compressor/expander

J. Wieberdink and B. Yan

Pressure Tank

Oil Hydraulic 
Cylinder

Servovalve

Liquid Piston 
Compressor 

Expander

Pressure 
Transducer Thermocouple

Shop 
Air

P

Water 
Hydraulic 
Cylinder

Linear Encoder

Pressure: 7bar to 210bar,  
Time: >2sec 2.5mm Interrupted Plate HX
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Previous experimental system
• Emphasizes validating thermodynamic states
• Controllable flow
• Accurate measurements (pressure, volume etc.)

• Only capable of 1 compression and 1 expansion stroke
• Inefficiency liquid piston generation
• Cannot store compressed air
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Current 5kW prototype design
Repeated operation:
• Reciprocating, multi-cycle
Input-output:
• Shaft power  compressed air storage
Optimize cost instead of size 

Challenges: Valve design; liquid piston 
sensing and control; dead-volume 
management; efficient PTO

From 
Atmosphere

(low pressure) To Storage 
Vessel 

(high pressure)

Compression 
Chamber

Liquid Piston 
pump/motor
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Summary
• Isothermal gas compressor/expander have wide market 

potential for green economy
• Key challenge: high efficiency AND high power
• Previous research has shown:

– optimized liquid piston w/ porous media C/E approach achieves 
200x increased power density at 92% efficiency

• Current research aims to create and validate a 
reciprocating prototype based on concept
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