NVH Training Workshop March 7, 2018

Introduction

David Herrin University of Kentucky

NVH Training Workshop March 7, 2018

Wave Animation

http://www.acs.psu.edu/drussell/Demos/waves-intro/waves-intro.html

Wave Motion – Some Basics

- Sound waves are pressure disturbances in fluids, such as air or hydraulic fluid as a result of vibration, turbulence, pumping, etc.
- These disturbances propagate at the speed of sound c (c = 343 m/s or 1125 ft/s in air at room temperature)
- The wavelength $\lambda = c/f$. For f = 1 kHz, the wavelength is approximately 0.34 m or 1.13 ft.

The wavelength is the acoustic yardstick.

Particle Motion

- Particles oscillate (but no net flow)
- Waves move much faster than particles

Particle Displacement $d(t) = D \sin(2\pi f t)$

Particle Velocity $u(t) = 2\pi f D \cos(2\pi f t)$

Overview

- Sound Power and Decibels
- Measuring Sound Power
- Noise Paths

Sound Intensity and Power

NVH Training Workshop March 7, 2018

An Analogy

Like temperature, the sound pressure depends on the source power level AND the environment in which the source is placed.

The Decibel Scale

Sound Pressure Level:
$$L_p(dB) = 10 \log_{10} \left(\frac{p_{rms}}{p_{ref}}\right)^2$$
 $p_{ref} = 20 \ \mu Pa$
Sound Power Level: $L_w(dB) = 10 \log_{10} \frac{W}{W_{ref}}$ $W_{ref} = 1 \times 10^{-12} \text{ watts}$

The main thing to remember is that 100 dB sound *pressure* level and 100 dB sound *power* level are completely different!

Sound Power to Sound Pressure

An Example

A source has a sound power level of 90 dB (re 10^{-12} W). What is the sound pressure level at a distance of 10 m in (a) a free field, (b) in a hemispherical free field, and (c) in a duct of cross-sectional area 1 m²?

a.
$$L_p = 90 - \log_{10} 4\pi (10)^2 = 59 \text{ dB} \text{ (re } 20\mu \text{ Pa)}$$

b. $L_p = 90 - \log_{10} 2\pi (10)^2 = 62 \text{ dB} \text{ (re } 20\mu \text{ Pa)}$
c. $L_p = 90 - \log_{10} (1) = 90 \text{ dB} \text{ (re } 20\mu \text{ Pa)}$

Overview

- Sound Power and Decibels
- Measuring Sound Power
- Noise Paths

Hemispherical Free Field

- Divide surface S into sub-areas ΔS
- Measure sound pressure at a central point in each area
- Sum up mean-square sound pressures weighted by areas

Munjal, 2013

NVH Training Workshop March 7, 2018

Standard Surfaces

University of Kentucky

6

Overview

- Sound Power and Decibels
- Measuring Sound Power
- Noise Paths

Heavy Equipment Multiple Sources

Database of Source Data

Table 1 Average Sound Power Level Spectra of Typical Noise Sources of Off-Road Vehicles

	Type of Noise Source	S	ound F							
No.		63	125	250	500	1000	2000	4000	8000	A-weighted Sound Power Level (dB)
1	ICE body	90	100	96	98	100	100	98	95	105
2	ICE exhaust system (with presence of a muffler)	95	105	100	90	90	87	85	80	95
3	ICE intake	82	92	86	80	80	80	75	73	85
4	ICE cooling fan	85	95	100	97	95	92	87	82	100
5	Vibrating roller	100	102	96	104	101	90	83	72	105
6	Track	75	78	85	83	82	85	78	69	90
7	Hydraulic pump	78	80	86	92	92	85	80	76	95

T.O.C.

Template Source Side

The source energy paths are characterized by the whether the forcing function is airborne, structure-borne, or Fluid-Borne.

What is the Source Attached to?

Summary

- How are sound pressure and sound power different? What is the importance of each?
- How is sound power measured?
- Why is hydraulic noise difficult to treat?

