CENTER FOR COMPACT AND EFFICIENT FLUID POWER

A National Science Foundation Engineering Research Center

Marquette University | Milwaukee School of Engineering | Purdue University | University of California, Merced | University of Illinois, Urbana-Champaign | University of Minnesota | Vanderbilt University

Hybrid MEMS Pneumatic Proportional Control Valve

Presenter: Nathan Hagstrom, Graduate Research Assistant Principal Investigator: Thomas Chase University of Minnesota

Overview

- What is a hybrid MEMS valve?
- What are alternatives to electromagnetic actuation?
- How does it work?
- How well did the prototype function?
- What are the plans for further development?

Microfabricated hybrid MEMS valve parts

Project Summary

Courtesy University of Illinois Project TB6 Team

- Use piezoelectric stack actuator to modulate flow
- Use MEMS fabrication techniques to micromachine an orifice array
- Leverage these two technologies to create an ultra efficient pneumatic proportional valve

Proposed Valve Benefits:

- Near zero power to hold at a fixed deflection
- Near zero heat generation
- Low cost
- Silent operation

Why Utilize of Piezoelectric Actuation?

- Low static valve power consumption
- Fast response speed
- Proportional flow control at high operating pressures
- Quiet operation
- Small temperature rise at low operating frequencies
- Can be used in a magnetic field
- Compact

Modern Alternatives to Electromagnetic Actuators

Piezostack: F++ δ-

Motion Amplified Piezostack: F+ δ +

- Increased displacement
- Lower output force
- Low power consumption

- Large displacement
- Large operating bandwidth
- Low output force
- Low power consumption

Hybrid MEMS Valve Concept (1 of 2)

Full flow when $\delta \approx 0.25$ D

Hybrid MEMS Valve Concept (2 of 2)

Single Orifice

Orifice Diameter: 1.28 mm Actuator Displacement: 320 um Flow Area: 1.287 mm² Orifice Diameter: 160 um Actuator Displacement: 40 um Flow Area: 1.287 mm²

Orifice Array

О

0

0

0

0

0

Orifice array removes need for piezostack motion amplifier!

0

Why Fabricate Orifice Array using MEMS Fabrication Techniques?

- Small orifice size in array format allow for use of piezostack actuator
- Cost effective bulk
 micromachining of silicon
- Silicon is stiffer and lighter than traditional materials
- Tighter tolerances on orifice features

Hybrid MEMS Valve Architecture

Assembled Hybrid MEMS Valve

Orifice Plate Flow Performance

Maximum v. Minimum Flow (6.205 bar)

Valve Turndown Ratio

Proportional Flow Performance

- Hysteresis characteristic of open loop voltage input
- Operating Pressure:
 6.205 bar

Mass Flow Rate Eqn: $\dot{m} = C_D \pi D \delta P^* \sqrt{\frac{\gamma}{RT^*}}$

Piezostack v. Piezobender Proportional Flow Performance

Piezostack Proportionality >> Piezobender Proportionality Piezostack proportionality is independent of pressure

Valve Transient Response

DT: valve dead time Dynamic: valve dynamic time

DT = 1 ms Dynamic = 3.2 ms Response Time = 4.2 ms

Pressure dynamics of test stand artificially increased measured response time

Valve Power Draw

Static Power Consumption:

Steady State Power: 13.1 µW

Dynamic Power Consumption:

Peak Power: 0.18W Average Power: 15.7, 82.2 mW

Competing Miniature Proportional Valves

Manufacturer	Actuation	Max	Flow Rate*	Avg	Response
	Method	Pressure	(SLPM)	Power	Time
		(bar)		(W)	(ms)
Commercial Valve 1	Electromagenetic	10.3	178.1	3.6	2.4
Commercial Valve 2	Electromagenetic	3.5	57.9		
Commercial Valve 3	Electromagenetic	6.9	201.6	2.2	10
Commercial Valve 4	Electromagenetic	6.9	10.3	1.9	
Commercial Valve 5	Electromagenetic	6.9	54.8	6.0	< 20
Commercial Valve 6**	Piezobender	6.0		1.0E-3	15
Commercial Valve	Amplified	6.9	230.1	0.6	< 20
7***	Piezostack				
Hybrid MEMS Valve	Piezostack	6.9****	47.2	1.31E-5	4

* Flow rate a 6 to 5 bar pressure difference
** Macro-scale piezoelectric bender actuator
*** Macro-scale piezoelectric stack actuator with motion amplifier
**** Limited by in house air supply

Conclusion

- 55:1 or better turndown ratio achieved across all operating pressures on concept demonstration prototype
 - Will be further improved
- Proportional but non-linear flow control
 - Will be improved with feedback control system
- 4 ms response time at 6.205 bar input pressure
 - Biased by test chamber pressure dynamics
- 13.1 µW steady state and 0.18W peak dynamic power consumption

The efficiency, compactness and performance of hybrid MEMS valves hold the potential to revolutionize pneumatic valve technology

Questions?

Valve Benefits:

- Near zero power to hold at a fixed deflection
- Proportional control
- Fast response time
- Near zero heat generation
- Low cost
- Silent operation
- Non magnetic