

Project 16MA1: Efficient, Integrated, Freeform Flexible Hydraulic Actuators

Georgia Institute of Technology | Marquette University | Milwaukee School of Engineering | North Carolina A&T State University | Purdue University of California, Merced | University of Illinois, Urbana-Champaign | University of Minnesota | Vanderbilt Univer

Jonathon Slightam, Research Assistant Marquette University Advisor: Dr. Mark Nagurka

MARQUETTE UNIVERSITY

Outline of Project

- Research Motivation
- Research Targets
- Improved modeling for hydraulic artificial muscles.

A National Science Foundation Engineering Research Center

- Model Validation of hydraulic artificial muscles.
- Control design and experiments.
- Current work: Application of hydraulic artificial muscles in additively manufactured systems.

A National Science Foundation Engineering Research Center

Research Motivation

- Decrease the overall energy consumption in fluid power industry.
 - 2-3 Quads consumed by fluid power in U.S.
 - 1 Quad = 1 Quadrillion BTUs.
 - Total energy consumption in U.S. is 100 Quads per year.
 - 310-380 MMT CO_2 produced by fluid power in U.S.
 - Fluid power is 2-3% of U.S. energy demands.
 - System efficiencies ranging from 9% to 60%.
- Reducing energy consumption in fluid power is critical to CCEFP's strategic plan.

Research Targets

- Increase specific power of hydraulic actuators.
- Utilize AM technologies to reduce energy consumption in hydraulic machinery.

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

KSF A National Science Foundation Engineering Research Center

achined fro

Reduce energy consumption by optimal control.

Applications:

CCEFP Summit at the University of Kentucky, March 7-9, 2018

terial fluid rout

Increasing the Specific Power of Hydraulic Actuators

CENTER FOR COMPACT AND EFFICIENT FLUID

A National Science Foundation Engineering Research Center

- HAM = Hydraulic artificial muscle
 - Powered by hydraulics.
 - Contracts when pressurized;
 acts like a human muscle.
 - Highest power-to-weight ratio in class of flexible actuators.

Background

• HAMs are a type of flexible fluidic actuator

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

A National Science Foundation Engineering Research Center

Flexible Fluidic Actuators

Flexible fluidic actuators transmit mechanical power through large deformations of elastic or hyperelastic membranes by an energized fluid.

A National Science Foundation Engineering Research Center

Artificial muscle components

How it works

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

A National Science Foundation Engineering Research Center

Background: Modeling

• First modeled by Gaylord using principle of virtual work

R.H. Gaylord. Fluid actuated motor system and stroking device. US Patent 2844126, 1957.

CENTER FOR COMPACT AND EFFICIENT FLUID POWE

KSF A National Science Foundation Engineering Research Center

Mational Science Foundation Engineering Research Center Modeling: Actuator Dynamics

• Nonlinear lumped parameter spring-massdamper model; Based on Gaylord model

- Hyperelasticity of rubber tube.
- Internal damping.
- Nonlinear kinetic friction.
- Inertia.
- Braid stiffness.

A National Science Foundation Engineering Research Center

Experimental Setup: HAM

A National Science Foundation Engineering Research Center

Failures Modes

End Cap Failure

Blow By

Braid Failure

A National Science Foundation Engineering Research Center

Experimental Setup: Test Stand

A National Science Foundation Engineering Research Center

Experimental Setup: Test Stand

- 1. Motor
- 2. Pump
- 3. Accumulator
- 4. Relief Valve
- 5. Check Valve
- 6. Proportional Flow CV
- 7. Hydraulic artificial muscle
- 8. Tank

Not shown: Pressure transducers

Experimental Results

- Quasi-static tests:
 - Free contraction Pressure = 7 MPa ~ 1000 psi

INSEE A National Science Foundation Engineering Research Center

– Isometric – Pressure 3.5 MPa ~ 500 psi

• Dynamic tests: 3.25 MPa ~ 475 psi

– Square wave input response @ 0.25

- Control Experiments
 - Sine wave tracking
 - Square-like wave trajectory tracking

A National Science Foundation Engineering Research Center

Static test – Free Contraction

A National Science Foundation Engineering Research Center

Static test – Isometric Results

A National Science Foundation Engineering Research Center

Dynamic Results (0.25 Hz)

A National Science Foundation Engineering Research Center

Model Based Control

Used model to develop Sliding mode control law

J.J. Slotine and W. Li. Applied Nonlinear Control. Prentice Hall. 1991.

Sine wave tracking (0.25 Hz)

A National Science Foundation Engineering Research Center

Sine wave tracking (0.25 Hz)

Outperforms PID control

A National Science Foundation Engineering Research Center

Trajectory Tracking

Maximum Error < 0.3 mm

 Topology optimization using Solidthinking Inspire and ParetoWorks

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

A National Science Foundation Engineering Research Center

Current work: Applications

System integration in hydraulic hand tool

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

- Goal: Reduce weight
 - Integrate hydraulic artificial muscle
 - 3D print components

• Multiple degree of freedom robot

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

- Multiple degree of freedom robot
 - How much energy can be saved using HAMs and Additive Manufacturing?

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

 E. Ackerman, 2015, "What is Boston Dynamics Working on Next," *IEEE Spectrum*, August 17th, 2015. Available from: <u>http://spectrum.ieee.org/automaton/robotics/humanoids/what-boston-dynamics-is-working-on-next</u>

Conclusions

• Demonstrated lightweight, flexible hydraulic actuation.

INSE A National Science Foundation Engineering Research Center

- Developed and validated model.
- Improved control performance using modelbased methods, e.g., SMC.
- Working on applications of HAMs and 3D printing technology to quantify benefits.
 Call for participation.

Kist A National Science Foundation Engineering Research Center

Acknowledgements

Thank you to the CCEFP, NFPA, and sponsors that made this work possible.

A National Science Foundation Engineering Research Center

Q & A

Thank you for your attention and we welcome comments and questions.

Email: jonathon.slightam@marquette.edu Advisor's email: <u>mark.nagurka@marquette.edu</u>