CENTER FOR COMPACT AND EFFICIENT FLUID POWER

A National Science Foundation Engineering Research Center

Georgia Institute of Technology | Marquette University | Milwaukee School of Engineering | North Carolina A&T State University | Purdue University of California, Merced | University of Illinois, Urbana-Champaign | University of Minnesota | Vanderbilt University

Seamless Electric to Hydraulic Conversion

Presenters:

James Van de Ven, Associate Professor, University of Minnesota Eric Severson, Assistant Professor, University of Wisconsin - Madison

Team:

James Van de Ven, Univ of Minnesota Jenny Swanson, UMN Eric Severson, UW - Madison Anvar Khamitov, UW-Madison

Barrier: Electric Hydraulic Conversion

- Electric to Hydraulic Conversion Critical:
 - Electrification of Mobile & Industrial Systems
 - Many Intermittent Hydraulic Loads
- Applications:
 - Electro-Hydraulic Actuation (EHA)
 - Charge Pump in HST
 - Hydraulic Steering
 - Intermittent Hydraulic Drives
 - Robotics

- Emerging: Zero Emission Vehicles, Fuel Cells

CENTER FOR COMPACT AND EFFICIENT FLUID POWER A National Science Foundation Engineering Research Center

- Electric to Hydraulic Conversion Critical:
 - Electrification of Mobile & Industrial Systems
 - Many Intermittent Hydraulic Loads
- EHA Benefits:
 - Efficient (Valveless)
 - Precise Control
 - Leak Resistant
 - Regeneration

State of the Art

- Modular components
 - Bulky
 - Redundant
 - Additional energy losses
- Poor cooling of electric machine

CENTER FOR COMPACT AND

Current/pressure ripple at low speeds

INSE A National Science Foundation Engineering Research Center

Concentric hydraulic power unit

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

A National Science Foundation Engineering Research Center

State of the Art

Concentric hydraulic power unit

CENTER FOR COMPACT AND EFFICIENT FLUID POWER A National Science Foundation Engineering Research Center Linear Electromagnetic Piston Pump

Our Approach: Seamless Integration

- Hydraulic Cooling of Electric Motor & Drive
 - Increased power density
- Tight Integration
 - Fewer (moving) components
 - Reduced weight and volume
 - Fewer energy conversions
 - Improved control bandwidth
- Wide Band Gap MOSFETS
 - Faster switching frequency
 - Higher efficiency
 - Higher power density

Stator Tooth Tips

Permanent Ring Magnets

Centerline

Benefits:

- High force density
- Low inductance
- Simple construction
- Simple electrical supply

Slot

Slot Opening

Shaft Back Iron

Prior Research:

Magnetic Equivalent Circuit (MEC) Model:

CENTER FOR COMPACT AND EFFICIENT FLU

KNSF A National Science Foundation Engineering Research Center

Prior Research:

FEA Model of Static Electro-Magnetics

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

A National Science Foundation Engineering Research Center

Prior Research

- Good static model agreement
- Optimized solutions violated MEC assumptions
- Dynamic performance disagreement

CENTER FOR COMPACT AND EFFICIENT FLU

KSF A National Science Foundation Engineering Research Center

New Modeling Approach

CENTER FOR COMPACT AND

- Replace MEC with
 opensource FEA
 - FEMM and XFEMM
 - Unlimited parallel solves
- Develop Matlab scripts
 - interface mechanical and electrical domains

Finite Element Method Magnetics (FEMM)

A National Science Foundation Engineering Research Center

Prior Research

Experimental Validation

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

A National Science Foundation Engineering Research Center

Research Map

Year 1: Model development and prototype design

- Task 1: Define the design requirements
- Task 2: Construct first-order models
- Task 3: Increase model detail to inform design
- Task 4: Select prototype parameters and detailed design

INSE A National Science Foundation Engineering Research Center

Year 2: Laboratory benchtop prototype

- Task 5: Fabricate prototype machine
- Task 6: Experimental testing
- Task 7: Hardware-in-the-loop testing

CENTER FOR COMPACT AND EFFICIENT FLUID POWER

A National Science Foundation Engineering Research Center

Parallel Project: Rotary Machine

DOE Sponsored Project:

• Integrate pump as rotor of electric motor

Wrap-up

• Emerging Needs for Electric \rightarrow Hydraulic Conversion

CENTER FOR COMPACT

KNSF A National Science Foundation Engineering Research Center

- Tight Coupling Improves Power Density & Efficiency
- Approach: Linear Electromagnetic Piston Pump
- Industry Request: "Drive cycle" data for charge circuits in various applications
- Contact: <u>vandeven@umn.edu</u>, <u>eric.severson@wisc.edu</u>

